Nejvíce citovaný článek - PubMed ID 26019252
The importance of localized auxin production for morphogenesis of reproductive organs and embryos in Arabidopsis
SHATTERPROOF 2 regulates TAA1 expression for the establishment of the gynoecium valve margins. Gynoecium development and patterning play a crucial role in determining the ultimate structure of the fruit and, thus, seed production. The MADS-box transcription factor SHATTERPROOF 2 (SHP2) contributes to valve margin differentiation and plays a major role in fruit dehiscence and seed dispersal. Despite the acknowledged contribution of auxin to gynoecium development, its precise role in valve margin establishment remains somewhat enigmatic. Our study addresses this gap by uncovering the role of SHP2 as a positive regulator of key auxin biosynthetic genes, TAA1 and YUCCA 4. Genetic and molecular analyses revealed that SHP2 directly regulates the expression of TAA1 in the valve margins of a stage 12 gynoecium with known regulators of flower and ovule development, such as AGAMOUS, SEEDSTICK, and SEPATALA 3. Collectively, our findings define a previously unrecognized function of SHP2 in the regulation of auxin biosynthetic genes during gynoecium development and raise the possibility that the auxin produced under SHP2 regulation may contribute significantly to the valve margin establishment.
- Klíčová slova
- Auxin, Gynoecium, SHATTERPROOF 2, TAA1, Valve margins, YUCCA 4,
- MeSH
- Arabidopsis * genetika metabolismus růst a vývoj MeSH
- květy genetika metabolismus růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- proteiny domény MADS * genetika metabolismus MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- regulace genové exprese u rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- proteiny domény MADS * MeSH
- proteiny huseníčku * MeSH
- SHP2 protein, Arabidopsis MeSH Prohlížeč
Embryogenesis in seed plants is the process during which a single cell develops into a mature multicellular embryo that encloses all the modules and primary patterns necessary to build the architecture of the new plant after germination. This process involves a series of cell divisions and coordinated cell fate determinations resulting in the formation of an embryonic pattern with a shoot-root axis and cotyledon(s). The phytohormone auxin profoundly controls pattern formation during embryogenesis. Auxin functions in the embryo through its maxima/minima distribution, which acts as an instructive signal for tissue specification and organ initiation. In this review, we describe how disruptions of auxin biosynthesis, transport, and response severely affect embryo development. Also, the mechanism of auxin action in the development of the shoot-root axis and the three-tissue system is discussed with recent findings. Biological tools that can be implemented to study the auxin function during embryo development are presented, as they may be of interest to the reader.
- MeSH
- biologický transport MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná růst a vývoj MeSH
- signální transdukce MeSH
- výhonky rostlin růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
The plant-specific proteins named PIN-FORMED (PIN) efflux carriers facilitate the direction of auxin flow and thus play a vital role in the establishment of local auxin maxima within plant tissues that subsequently guide plant ontogenesis. They are membrane integral proteins with two hydrophobic regions consisting of alpha-helices linked with a hydrophilic loop, which is usually longer for the plasma membrane-localized PINs. The hydrophilic loop harbors molecular cues important for the subcellular localization and thus auxin efflux function of those transporters. The three-dimensional structure of PIN has not been solved yet. However, there are scattered but substantial data concerning the functional characterization of amino acid strings that constitute these carriers. These sequences include motifs vital for vesicular trafficking, residues regulating membrane diffusion, cellular polar localization, and activity of PINs. Here, we summarize those bits of information striving to provide a reference to structural motifs that have been investigated experimentally hoping to stimulate the efforts toward unraveling of PIN structure-function connections.
- Klíčová slova
- PIN efflux carriers, auxin transport, protein domains, sequence motifs, subcellular trafficking,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit. Moreover, newly formed seeds need nutrients and form new carbon sink, generating high sugar flow from vegetative tissues to the seeds. This review will discuss how auxin and sugars may be considered as signaling molecules to coordinate seed and fruit development.
- Klíčová slova
- auxin, embryo, endosperm, fruit, molecular communication, seed, sucrose,
- MeSH
- cukry metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- ovoce růst a vývoj metabolismus MeSH
- semena rostlinná růst a vývoj metabolismus MeSH
- signální transdukce * MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cukry MeSH
- kyseliny indoloctové MeSH
Auxin is an important regulator of plant ontogenies including embryo development and the exogenous application of this phytohormone has been found to be necessary for the induction of the embryogenic response in plant explants that have been cultured in vitro. However, in the present study, we show that treatment of Arabidopsis explants with trichostatin A (TSA), which is a chemical inhibitor of histone deacetylases, induces somatic embryogenesis (SE) without the exogenous application of auxin. We found that the TSA-treated explants generated somatic embryos that developed efficiently on the adaxial side of the cotyledons, which are the parts of an explant that are involved in auxin-induced SE. A substantial reduction in the activity of histone deacetylase (HDAC) was observed in the TSA-treated explants, thus confirming a histone acetylation-related mechanism of the TSA-promoted embryogenic response. Unexpectedly, the embryogenic effect of TSA was lower on the auxin-supplemented media and this finding further suggests an auxin-related mechanism of TSA-induced SE. Congruently, we found a significantly increased content of indolic compounds, which is indicative of IAA and an enhanced DR5::GUS signal in the TSA-treated explants. In line with these results, two of the YUCCA genes (YUC1 and YUC10), which are involved in auxin biosynthesis, were found to be distinctly up-regulated during TSA-induced SE and their expression was colocalised with the explant sites that are involved in SE. Beside auxin, ROS were extensively accumulated in response to TSA, thereby indicating that a stress-response is involved in TSA-triggered SE. Relevantly, we showed that the genes encoding the transcription factors (TFs) that have a regulatory function in auxin biosynthesis including LEC1, LEC2, BBM, and stress responses (MYB118) were highly up-regulated in the TSA-treated explants. Collectively, the results provide several pieces of evidence about the similarities between the molecular pathways of SE induction that are triggered by TSA and 2,4-D that involve the activation of the auxin-responsive TF genes that have a regulatory function in auxin biosynthesis and stress responses. The study suggests the involvement of histone acetylation in the auxin-mediated release of the embryogenic program of development in the somatic cells of Arabidopsis.
- Klíčová slova
- Arabidopsis thaliana, auxin, epigenetics, histone acetylation, in vitro culture, somatic embryogenesis, transcription factors, trichostatin A,
- Publikační typ
- časopisecké články MeSH
Plant growth and development are critically influenced by unpredictable abiotic factors. To survive fluctuating changes in their environments, plants have had to develop robust adaptive mechanisms. The dynamic and complementary actions of the auxin and cytokinin pathways regulate a plethora of developmental processes, and their ability to crosstalk makes them ideal candidates for mediating stress-adaptation responses. Other crucial signaling molecules responsible for the tremendous plasticity observed in plant morphology and in response to abiotic stress are reactive oxygen species (ROS). Proper temporal and spatial distribution of ROS and hormone gradients is crucial for plant survival in response to unfavorable environments. In this regard, the convergence of ROS with phytohormone pathways acts as an integrator of external and developmental signals into systemic responses organized to adapt plants to their environments. Auxin and cytokinin signaling pathways have been studied extensively. Nevertheless, we do not yet understand the impact on plant stress tolerance of the sophisticated crosstalk between the two hormones. Here, we review current knowledge on the function of auxin and cytokinin in redirecting growth induced by abiotic stress in order to deduce their potential points of crosstalk.
- Klíčová slova
- ROS, abiotic stress, adaptation, auxin, crosstalk, cytokinin, growth,
- MeSH
- biologický transport MeSH
- cytokininy metabolismus MeSH
- fyziologická adaptace MeSH
- fyziologický stres * MeSH
- fyziologie rostlin * MeSH
- genové regulační sítě MeSH
- kyseliny indoloctové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny genetika metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokininy MeSH
- kyseliny indoloctové MeSH
- regulátory růstu rostlin MeSH
Auxin directs plant ontogenesis via differential accumulation within tissues depending largely on the activity of PIN proteins that mediate auxin efflux from cells and its directional cell-to-cell transport. Regardless of the developmental importance of PINs, the structure of these transporters is poorly characterized. Here, we present experimental data concerning protein topology of plasma membrane-localized PINs. Utilizing approaches based on pH-dependent quenching of fluorescent reporters combined with immunolocalization techniques, we mapped the membrane topology of PINs and further cross-validated our results using available topology modeling software. We delineated the topology of PIN1 with two transmembrane (TM) bundles of five α-helices linked by a large intracellular loop and a C-terminus positioned outside the cytoplasm. Using constraints derived from our experimental data, we also provide an updated position of helical regions generating a verisimilitude model of PIN1. Since the canonical long PINs show a high degree of conservation in TM domains and auxin transport capacity has been demonstrated for Arabidopsis representatives of this group, this empirically enhanced topological model of PIN1 will be an important starting point for further studies on PIN structure-function relationships. In addition, we have established protocols that can be used to probe the topology of other plasma membrane proteins in plants.
- Klíčová slova
- Arabidopsis thaliana, auxin efflux carriers, plasma membrane protein, topology,
- MeSH
- Arabidopsis cytologie metabolismus MeSH
- buněčná membrána metabolismus MeSH
- cytoplazma metabolismus MeSH
- extracelulární prostor metabolismus MeSH
- hydrofobní a hydrofilní interakce MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové transportní proteiny chemie metabolismus MeSH
- proteinové domény MeSH
- proteiny huseníčku chemie metabolismus MeSH
- transport proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- PIN1 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH