Nejvíce citovaný článek - PubMed ID 26298100
Reduced gene expression levels after chronic exposure to high concentrations of air pollutants
DNA methylation is the most studied epigenetic mechanism that regulates gene expression, and it can serve as a useful biomarker of prior environmental exposure and future health outcomes. This study focused on DNA methylation profiles in a human cohort, comprising 125 nonsmoking city policemen (sampled twice), living and working in three localities (Prague, Ostrava and Ceske Budejovice) of the Czech Republic, who spent the majority of their working time outdoors. The main characterization of the localities, differing by major sources of air pollution, was defined by the stationary air pollution monitoring of PM2.5, B[a]P and NO2. DNA methylation was analyzed by a genome-wide microarray method. No season-specific DNA methylation pattern was discovered; however, we identified 13,643 differentially methylated CpG loci (DML) for a comparison between the Prague and Ostrava groups. The most significant DML was cg10123377 (log2FC = -1.92, p = 8.30 × 10-4) and loci annotated to RPTOR (total 20 CpG loci). We also found two hypomethylated loci annotated to the DNA repair gene XRCC5. Groups of DML annotated to the same gene were linked to diabetes mellitus (KCNQ1), respiratory diseases (PTPRN2), the dopaminergic system of the brain and neurodegenerative diseases (NR4A2). The most significant possibly affected pathway was Axon guidance, with 86 potentially deregulated genes near DML. The cluster of gene sets that could be affected by DNA methylation in the Ostrava groups mainly includes the neuronal functions and biological processes of cell junctions and adhesion assembly. The study demonstrates that the differences in the type of air pollution between localities can affect a unique change in DNA methylation profiles across the human genome.
- Klíčová slova
- DNA methylation, air pollution, environment, epigenetics, molecular epidemiology,
- MeSH
- celogenomová asociační studie MeSH
- dospělí MeSH
- látky znečišťující vzduch škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- metylace DNA účinky léků MeSH
- policie * MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- znečištění ovzduší škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as "hormesis". Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.
- Klíčová slova
- adaptive response, microRNA machinery, preventive medicine,
- MeSH
- epigeneze genetická * MeSH
- fyziologická adaptace * MeSH
- fyziologický stres * MeSH
- hormeze * MeSH
- lidé MeSH
- oxidační stres MeSH
- poškození DNA MeSH
- regulace genové exprese MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM1 and PM10 (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM1 and PM10 chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM10 concentration was measured in Radvanice than in Plesná, whereas PM1 concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM10 and PM1, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM10 and 27% for PM1), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM10 and 36% for PM1). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM10 and PM1, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.
- Klíčová slova
- Chemical size distribution, Industrial site, Inter-site comparison, PM1, PM10, Positive matrix factorization,
- MeSH
- monitorování životního prostředí MeSH
- pevné částice analýza MeSH
- velikost částic MeSH
- velkoměsta MeSH
- vítr MeSH
- znečištění ovzduší analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Polsko MeSH
- velkoměsta MeSH
- Názvy látek
- pevné částice MeSH