Nejvíce citovaný článek - PubMed ID 26328005
Isolation, primary culture, morphological and molecular characterization of circulating tumor cells in gynecological cancers
Circulating tumor cells (CTCs) have significant potential to become an important tool for monitoring the effects of treatment in solid tumors. The present study reports the occurance of CTCs in cervical cancer (CC) patients during radical chemoradiotherapy (CRT), including brachytherapy (BRT), and during the follow-up period. Patients diagnosed with CC treated with radical CRT were included in the study (n=30). A total of 167 CTC-tests (MetaCell®) were provided at predefined testing time points during the study follow-up (e.g., before CRT, after CRT, every three months of follow-up). In parallel with CTC-testing, SCC-Ag were measured to compare their predictive values during treatment. CTCs were present in 96% (25/26) of patients at the time of diagnosis and in 61% (14/23) after treatment. Patients who relapsed during the 36-month follow-up (n=10) showed an elevation in pre-treatment CTC- numbers, similarly there was a significant increase in pre-treatment SCC-Ag. As next, an increased number of CTCs was observed approximately 12 weeks before relapse was diagnosed by standard imaging modalities (MRI, US, PET-CT) in 3 of 4 patients. In addition to standardized vital cytomorphology of enriched CTCs, quantitative PCR (qPCR) was used to inform the nature of CTCs before treatment. Analysis revealed increased SOX2 and POUSF expression in CTCs in the group of patients with recurrence (P < 0.02). Disease aggressiveness may be related to increased expression of stem cell markers, as found in samples from relapsed patients. CTCs may be an aid to assess tumor burden and disease aggressiveness. An increase in CTCs precedes an increase in SCC-Ag and confirmation of relapse by imaging, as shown in our study.
- Klíčová slova
- CRT, Cervical cancer, SCC, brachytherapy, chemoradiotherapy, circulating tumor cells, stemness,
- Publikační typ
- časopisecké články MeSH
Circulating tumor cells (CTCs), detached from the primary tumor or metastases and shed in the patient's bloodstream, represent a relatively easily obtainable sample of the cancer tissue that can indicate the actual state of cancer, and their evaluation can be repeated many times during the course of treatment. As part of liquid biopsy, evaluation of CTCs provides a lot of clinically relevant information, which reflects the actual, real-time conditions of the disease. CTCs can be used in cancer diagnosis or screening, real-time long-term disease monitoring and even therapy guidance. Their analysis can include their number, morphology, and biological features by using immunocytochemistry and all "-omic" technologies. This review describes methods of CTC isolation and potential clinical utilization in lung cancer.
- Klíčová slova
- Circulating tumor cells, biomarker, culturing, liquid biopsy, lung cancer, review,
- MeSH
- časná detekce nádoru MeSH
- diagnostické techniky molekulární MeSH
- lidé MeSH
- nádorové biomarkery MeSH
- nádorové cirkulující buňky metabolismus patologie MeSH
- nádory plic diagnóza etiologie terapie MeSH
- tekutá biopsie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery MeSH
INTRODUCTION: This study analyzes peripheral blood samples from breast cancer (BC) patients. CTCs from peripheral blood were enriched by size-based separation and were then cultivated in vitro. The primary aim of this study was to demonstrate the antigen independent CTC separation method with high CTC recovery. Subsequently, CTCs enriched several times during the treatment were characterized molecularly. METHODS: Patients with different stages of BC (N = 167) were included into the study. All patients were candidates for surgery, surgical diagnostics, or were undergoing chemotherapy. In parallel, 20 patients were monitored regularly and in addition to CTC presence, also CTC character was examined by qPCR, with special focus on HER2 and ESR status. RESULTS: CTC positivity in the cohort was 76%. There was no significant difference between the tested groups, but the highest CTC occurrence was identified in the group undergoing surgery and similarly in the group before the start of neoadjuvant treatment. On the other hand, the lowest CTC frequencies were observed in the menopausal patient group (56%), ESR+ patient group (60%), and DCIS group (44.4%). It is worth noting that after completion of neoadjuvant therapy (NACT) CTCs were present in 77.7% of cases. On the other hand, patients under hormonal treatment were CTC positive only in 52% of cases. DISCUSSIONS: Interestingly, HER2 and ESR status of CTCs differs from the status of primary tumor. In 50% of patients HER2 status on CTCs changed not only from HER2+ to HER2-, but also from HER2- to HER2+ (33%). ESR status in CTCs changed only in one direction from ESR+ to ESR-. CONCLUSIONS: Data obtained from the present study suggest that BC is a heterogeneous disease but CTCs may be detected independently of the disease characteristics in 76% of patients at any time point during the course of the disease. This relatively high CTC occurrence in BC should be considered when planning the long-term patient monitoring.
- Klíčová slova
- Breast cancer, CTCs, Circulating tumor cells, Cultivation, Gene expression, In vitro, MetaCell,
- MeSH
- alfa receptor estrogenů genetika MeSH
- dospělí MeSH
- genetická heterogenita * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery genetika MeSH
- nádorové cirkulující buňky patologie MeSH
- nádory prsu krev genetika patologie MeSH
- receptor erbB-2 genetika MeSH
- regulace genové exprese u nádorů MeSH
- senioři MeSH
- staging nádorů MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- alfa receptor estrogenů MeSH
- ERBB2 protein, human MeSH Prohlížeč
- ESR1 protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- receptor erbB-2 MeSH
Evaluation of circulating tumor cells (CTCs) has demonstrated clinical validity as a prognostic tool based on enumeration, but since the introduction of this tool to the clinic in 2004, further clinical utility and widespread adoption have been limited. However, immense efforts have been undertaken to further the understanding of the mechanisms behind the biology and kinetics of these rare cells, and progress continues toward better applicability in the clinic. This review describes recent advances within the field, with a particular focus on understanding the biological significance of CTCs, and summarizes emerging methods for identifying, isolating, and interrogating the cells that may provide technical advantages allowing for the discovery of more specific clinical applications. Included is an atlas of high-definition images of CTCs from various cancer types, including uncommon CTCs captured only by broadly inclusive nonenrichment techniques.
- Klíčová slova
- biomarkers, circulating tumor microemboli, fluid biopsy, liquid biopsy, metastasis, precision medicine,
- MeSH
- lidé MeSH
- nádorové biomarkery analýza MeSH
- nádorové cirkulující buňky patologie MeSH
- nádory patologie MeSH
- prognóza MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery MeSH
The main focus of the study was to detect circulating tumor cells (CTCs) in ovarian cancer (OC) patients using a new methodological approach (MetaCell(TM)) which is based on size-dependent separation of CTCs and subsequent cytomorphological evaluation. Cytomorphological evaluation using vital fluorescence microscopy approach enables to use the captured cells for further RNA/DNA analysis. The cytomorphological analysis is then completed by gene expression analysis (GEA). GEA showed that relative expression of EPCAM is elevated in CTC-enriched fractions in comparison to the whole peripheral blood sample and that the expression grows with in vitro cultivation time. Comparison of the relative gene expression level in the group of peripheral blood samples and CTC-fraction samples confirmed a statistically significant difference for the following genes (p < 0.02): KRT7, WT1, EPCAM, MUC16, MUC1, KRT18 and KRT19. Thus, we suggest that the combination of the above listed genes could confirm CTCs presence in OC patients with higher specificity than when GEA tests are performed for one marker only. The GEA revealed two separate clusters identifying patients with or without CTCs.
- Klíčová slova
- CTCs, MetaCell, circulating tumor cells, cultivation, gene expression, in vitro, ovarian cancer,
- Publikační typ
- časopisecké články MeSH