Most cited article - PubMed ID 26400218
Multiple displacement amplification of the DNA from single flow-sorted plant chromosome
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
- Keywords
- Agropyron cristatum, Illumina sequencing, SSR-marker development, annotation, chromosome sorting, chromosome-specific sequences,
- MeSH
- Agropyron * genetics MeSH
- Chromosomes, Plant genetics MeSH
- Disease Resistance genetics MeSH
- Triticum genetics MeSH
- Plant Breeding MeSH
- Publication type
- Journal Article MeSH
Flow cytometric analysis and sorting of plant mitotic chromosomes has been mastered by only a few laboratories worldwide. Yet, it has been contributing significantly to progress in plant genetics, including the production of genome assemblies and the cloning of important genes. The dissection of complex genomes by flow sorting into the individual chromosomes that represent small parts of the genome reduces DNA sample complexity and streamlines projects relying on molecular and genomic techniques. Whereas flow cytometric analysis, that is, chromosome classification according to fluorescence and light scatter properties, is an integral part of any chromosome sorting project, it has rarely been used on its own due to lower resolution and sensitivity as compared to other cytogenetic methods. To perform chromosome analysis and sorting, commercially available electrostatic droplet sorters are suitable. However, in order to resolve and purify chromosomes of interest the instrument must offer high resolution of optical signals as well as stability during long runs. The challenge is thus not the instrumentation, but the adequate sample preparation. The sample must be a suspension of intact mitotic metaphase chromosomes and the protocol, which includes the induction of cell cycle synchrony, accumulation of dividing cells at metaphase, and release of undamaged chromosomes, is time consuming and laborious and needs to be performed very carefully. Moreover, in addition to fluorescent staining chromosomal DNA, the protocol may include specific labelling of DNA repeats to facilitate discrimination of particular chromosomes. This review introduces the applications of chromosome sorting in plants, and discusses in detail sample preparation, chromosome analysis and sorting to achieve the highest purity in flow-sorted fractions, and their suitability for downstream applications.
- Keywords
- DNA amplification, DNA isolation, cell cycle synchronization, gene mapping and cloning, genome sequencing, liquid chromosome suspension, marker development, mitotic metaphase chromosomes, repetitive DNA labelling,
- MeSH
- Cell Cycle MeSH
- Chromosomes, Plant * genetics MeSH
- Metaphase MeSH
- Flow Cytometry MeSH
- Plants * genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
A genetic linkage map of dioecious garden asparagus (Asparagus officinalis L., 2n = 2x = 20) was constructed using F1 population, simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. In total, 1376 SNPs and 27 SSRs were used for genetic mapping. Two resulting parental maps contained 907 and 678 markers spanning 1947 and 1814 cM, for female and male parent, respectively, over ten linkage groups representing ten haploid chromosomes of the species. With the aim to anchor the ten genetic linkage groups to individual chromosomes and develop a tool to facilitate genome analysis and gene cloning, we have optimized a protocol for flow cytometric chromosome analysis and sorting in asparagus. The analysis of DAPI-stained suspensions of intact mitotic chromosomes by flow cytometry resulted in histograms of relative fluorescence intensity (flow karyotypes) comprising eight major peaks. The analysis of chromosome morphology and localization of 5S and 45S rDNA by FISH on flow-sorted chromosomes, revealed that four chromosomes (IV, V, VI, VIII) could be discriminated and sorted. Seventy-two SSR markers were used to characterize chromosome content of individual peaks on the flow karyotype. Out of them, 27 were included in the genetic linkage map and anchored genetic linkage groups to chromosomes. The sex determining locus was located on LG5, which was associated with peak V representing a chromosome with 5S rDNA locus. The results obtained in this study will support asparagus improvement by facilitating targeted marker development and gene isolation using flow-sorted chromosomes.
- Keywords
- Asparagus officinalis, FISH, SNPs, SSRs, flow-sorted chromosomes, genetic map, sex chromosome,
- Publication type
- Journal Article MeSH
BACKGROUND: Haynaldia villosa (H. villosa) has been recognized as a species potentially useful for wheat improvement. The availability of its genomic sequences will boost its research and application. RESULTS: In this work, the short arm of H. villosa chromosome 4V (4VS) was sorted by flow cytometry and sequenced using Illumina platform. About 170.6 Mb assembled sequences were obtained. Further analysis showed that repetitive elements accounted for about 64.6% of 4VS, while the coding fraction, which is corresponding to 1977 annotated genes, represented 1.5% of the arm. The syntenic regions of the 4VS were searched and identified on wheat group 4 chromosomes 4AL, 4BS, 4DS, Brachypodium chromosomes 1 and 4, rice chromosomes 3 and 11, and sorghum chromosomes 1, 5 and 8. Based on genome-zipper analysis, a virtual gene order comprising 735 gene loci on 4VS genome was built by referring to the Brachypodium genome, which was relatively consistent with the scaffold order determined for Ae. tauschii chromosome 4D. The homologous alleles of several cloned genes on wheat group 4 chromosomes including Rht-1 gene were identified. CONCLUSIONS: The sequences provided valuable information for mapping and positional-cloning genes located on 4VS, such as the wheat yellow mosaic virus resistance gene Wss1. The work on 4VS provided detailed insights into the genome of H. villosa, and may also serve as a model for sequencing the remaining parts of H. villosa genome.
- Keywords
- Chromosome arm 4VS, Flow sorting, Genome zipper, Haynaldia villosa, Scaffold,
- MeSH
- Chromosomes, Plant genetics MeSH
- Species Specificity MeSH
- Genomics MeSH
- Poaceae genetics MeSH
- Chromosome Mapping MeSH
- Gene Order genetics MeSH
- Repetitive Sequences, Nucleic Acid genetics MeSH
- Sequence Analysis, DNA * MeSH
- Publication type
- Journal Article MeSH
The hexaploid wheat genotype Chinese Spring (CS) has been used worldwide as the reference base for wheat genetics and genomics, and significant resources have been used by the international community to generate a reference wheat genome based on this genotype. By sequencing flow-sorted 3B chromosome from a hexaploid wheat genotype CRNIL1A and comparing the obtained sequences with those available for CS, we detected that a large number of sequences in the former were missing in the latter. If the distribution of such sequences in the hexaploid wheat genome is random, CRNILA sequences missing in CS could be as much as 159.3 Mb even if only fragments of 50 bp or longer were considered. Analysing RNA sequences available in the public domains also revealed that dispensable genes are common in hexaploid wheat. Together with those extensive intra- and interchromosomal rearrangements in CS, the existence of such dispensable genes is another factor highlighting potential issues with the use of reference genomes in various studies. Strong deviation in distributions of these dispensable sequences among genotypes with different geographical origins provided the first evidence indicating that they could be associated with adaptation in wheat.
BACKGROUND: Identification of transgene insertion sites in plant genomes has practical implications for crop breeding and is a stepping stone to analyze transgene function. However, single copy sequences are not always easy to localize in large plant genomes by standard approaches. RESULTS: We employed flow cytometric chromosome sorting to determine chromosomal location of barley sucrose transporter construct in three transgenic lines of common wheat. Flow-sorted chromosomes were used as template for PCR and fluorescence in situ hybridization to identify chromosomes with transgenes. The chromosomes carrying the transgenes were then confirmed by PCR using DNA amplified from single flow-sorted chromosomes as template. CONCLUSIONS: Insertion sites of the transgene were unambiguously localized to chromosomes 4A, 7A and 5D in three wheat transgenic lines. The procedure presented in this study is applicable for localization of any single-copy sequence not only in wheat, but in any plant species where suspension of intact mitotic chromosomes suitable for flow cytometric sorting can be prepared.
- Keywords
- Flow cytometric sorting, Hordeum vulgare, HvSUT1, Single chromosome amplification, Transgene localization, Triticum aestivum,
- Publication type
- Journal Article MeSH