Most cited article - PubMed ID 26446792
Porphyrin Binding to Gun4 Protein, Facilitated by a Flexible Loop, Controls Metabolite Flow through the Chlorophyll Biosynthetic Pathway
In natural environments, photosynthetic organisms adjust their metabolism to cope with the fluctuating availability of combined nitrogen sources, a growth-limiting factor. For acclimation, the dynamic degradation/synthesis of tetrapyrrolic pigments, as well as of the amino acid arginine, is pivotal; however, there has been no evidence that these processes could be functionally coupled. Using co-immunopurification and spectral shift assays, we found that in the cyanobacterium Synechocystis sp. PCC 6803, the arginine metabolism-related ArgD and CphB enzymes form protein complexes with Gun4, an essential protein for chlorophyll biosynthesis. Gun4 binds ArgD with high affinity, and the Gun4-ArgD complex accumulates in cells supplemented with ornithine, a key intermediate of the arginine pathway. Elevated ornithine levels restricted de novo synthesis of tetrapyrroles, which arrested the recovery from nitrogen deficiency. Our data reveal a direct crosstalk between tetrapyrrole biosynthesis and arginine metabolism that highlights the importance of balancing photosynthetic pigment synthesis with nitrogen homeostasis.
- Keywords
- CP: Plants, Synechocystis, arginine metabolism, bilins, chlorophyll, genome-uncoupled-4, nitrogen homeostasis, tetrapyrrole biosynthesis,
- MeSH
- Arginine metabolism MeSH
- Chlorophyll metabolism MeSH
- Nitrogen MeSH
- Ornithine MeSH
- Synechocystis * metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arginine MeSH
- Chlorophyll MeSH
- Nitrogen MeSH
- Ornithine MeSH
Chlorophylls (Chls) are essential cofactors for photosynthesis. One of the least understood steps of Chl biosynthesis is formation of the fifth (E) ring, where the red substrate, magnesium protoporphyrin IX monomethyl ester, is converted to the green product, 3,8-divinyl protochlorophyllide a In oxygenic phototrophs, this reaction is catalyzed by an oxygen-dependent cyclase, consisting of a catalytic subunit (AcsF/CycI) and an auxiliary protein, Ycf54. Deletion of Ycf54 impairs cyclase activity and results in severe Chl deficiency, but its exact role is not clear. Here, we used a Δycf54 mutant of the model cyanobacterium Synechocystis sp. PCC 6803 to generate suppressor mutations that restore normal levels of Chl. Sequencing Δycf54 revertants identified a single D219G amino acid substitution in CycI and frameshifts in slr1916, which encodes a putative esterase. Introduction of these mutations to the original Δycf54 mutant validated the suppressor effect, especially in combination. However, comprehensive analysis of the Δycf54 suppressor strains revealed that the D219G-substituted CycI is only partially active and its accumulation is misregulated, suggesting that Ycf54 controls both the level and activity of CycI. We also show that Slr1916 has Chl dephytylase activity in vitro and its inactivation up-regulates the entire Chl biosynthetic pathway, resulting in improved cyclase activity. Finally, large-scale bioinformatic analysis indicates that our laboratory evolution of Ycf54-independent CycI mimics natural evolution of AcsF in low-light-adapted ecotypes of the oceanic cyanobacteria Prochlorococcus, which lack Ycf54, providing insight into the evolutionary history of the cyclase enzyme.
- Keywords
- chlorophyll, cyanobacteria, cyclase, microevolution, photosynthesis,
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Bacteriochlorophylls biosynthesis genetics MeSH
- Gene Deletion * MeSH
- Oxygenases genetics metabolism MeSH
- Prochlorococcus genetics metabolism MeSH
- Synechocystis genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Bacteriochlorophylls MeSH
- Oxygenases MeSH
Oxygenic photosynthesis relies on accessory factors to promote the assembly and maintenance of the photosynthetic apparatus in the thylakoid membranes. The highly conserved membrane-bound rubredoxin-like protein RubA has previously been implicated in the accumulation of both PSI and PSII, but its mode of action remains unclear. Here, we show that RubA in the cyanobacterium Synechocystis sp PCC 6803 is required for photoautotrophic growth in fluctuating light and acts early in PSII biogenesis by promoting the formation of the heterodimeric D1/D2 reaction center complex, the site of primary photochemistry. We find that RubA, like the accessory factor Ycf48, is a component of the initial D1 assembly module as well as larger PSII assembly intermediates and that the redox-responsive rubredoxin-like domain is located on the cytoplasmic surface of PSII complexes. Fusion of RubA to Ycf48 still permits normal PSII assembly, suggesting a spatiotemporal proximity of both proteins during their action. RubA is also important for the accumulation of PSI, but this is an indirect effect stemming from the downregulation of light-dependent chlorophyll biosynthesis induced by PSII deficiency. Overall, our data support the involvement of RubA in the redox control of PSII biogenesis.
- MeSH
- Bacterial Proteins genetics metabolism MeSH
- Pigments, Biological isolation & purification MeSH
- Chlorophyll biosynthesis MeSH
- Photosynthesis physiology MeSH
- Photosystem I Protein Complex metabolism MeSH
- Photosystem II Protein Complex metabolism MeSH
- Mutation MeSH
- Rubredoxins chemistry genetics metabolism MeSH
- Synechocystis genetics growth & development metabolism MeSH
- Thylakoids metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Pigments, Biological MeSH
- Chlorophyll MeSH
- Photosystem I Protein Complex MeSH
- Photosystem II Protein Complex MeSH
- Rubredoxins MeSH
Ferrochelatase (FeCh) is an essential enzyme catalyzing the synthesis of heme. Interestingly, in cyanobacteria, algae, and plants, FeCh possesses a conserved transmembrane chlorophyll a/b binding (CAB) domain that resembles the first and the third helix of light-harvesting complexes, including a chlorophyll-binding motif. Whether the FeCh CAB domain also binds chlorophyll is unknown. Here, using biochemical and radiolabeled precursor experiments, we found that partially inhibited activity of FeCh in the cyanobacterium Synechocystis PCC 6803 leads to overproduction of chlorophyll molecules that accumulate in the thylakoid membrane and, together with carotenoids, bind to FeCh. We observed that pigments bound to purified FeCh are organized in an energy-dissipative conformation and further show that FeCh can exist in vivo as a monomer or a dimer depending on its own activity. However, pigmented FeCh was purified exclusively as a dimer. Separately expressed and purified FeCH CAB domain contained a pigment composition similar to that of full-length FeCh and retained its quenching properties. Phylogenetic analysis suggested that the CAB domain was acquired by a fusion between FeCh and a single-helix, high light-inducible protein early in the evolution of cyanobacteria. Following this fusion, the FeCh CAB domain with a functional chlorophyll-binding motif was retained in all currently known cyanobacterial genomes except for a single lineage of endosymbiotic cyanobacteria. Our findings indicate that FeCh from Synechocystis exists mostly as a pigment-free monomer in cells but can dimerize, in which case its CAB domain creates a functional pigment-binding segment organized in an energy-dissipating configuration.
- Keywords
- Synechocystis, carotenoid, chlorophyll, chloroplast, ferrochelatase, heme, light harvesting complex (LHC)-like proteins, membrane protein, photosynthesis, photosynthetic pigment, pigment binding, plant biochemistry,
- MeSH
- Chlorophyll A metabolism MeSH
- Chlorophyll metabolism MeSH
- Dimerization MeSH
- Ferrochelatase chemistry metabolism MeSH
- Phylogeny MeSH
- Carotenoids metabolism MeSH
- Protein Conformation MeSH
- Light-Harvesting Protein Complexes metabolism MeSH
- Synechocystis enzymology MeSH
- Binding Sites MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chlorophyll A MeSH
- Chlorophyll MeSH
- chlorophyll b MeSH Browser
- Ferrochelatase MeSH
- Carotenoids MeSH
- Light-Harvesting Protein Complexes MeSH