Nejvíce citovaný článek - PubMed ID 26476323
Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor
This study analyzes the effects of acetaminophen (APAP) as a contaminant on physiological characteristics of lettuce plants (Lactuca sativa L.). Experiments were provided in an experimental greenhouse with semi-controlled conditions. The effect of different amounts of contaminant was evaluated by using regression analysis. Plants were grown in five concentrations of APAP: 0 µM, 5 µM, 50 µM, 500 µM, and 5 mM for 14 days in two variants, acute and chronic. The obtained results show that the monitored parameters were demonstrably influenced by the experimental variant. Plants are more sensitive to chronic contamination compared to acute. Significant (p < 0.05) deviation in photosynthesis and fluorescence was observed compared to the control in different variants. The highest doses of APAP reduced the intensity of photosynthesis by a maximum of more than 31% compared to the control. A reduction of 18% was observed for the fluorescence parameters. Pronounced correlation was described between chlorophyll fluorescence parameters and yield mainly under APAP conditions. The amount of chlorophyll was influenced by exposure to APAP.
- Klíčová slova
- APAP, Lactuca sativa, acetaminophen, fluorescence, photosynthesis,
- Publikační typ
- časopisecké články MeSH
Non-steroidal anti-inflammatory drugs as an important group of emerging environmental contaminants in irrigation water and soils can influence biochemical and physiological processes essential for growth and development in plants as non-target organisms. Plants are able to take up, transport, transform, and accumulate drugs in the roots. Root biomass in ten-days old pea plants was lowered by 6% already under 0.1 mg/L naproxen (NPX) due to a lowered number of lateral roots, although 0.5 mg/L NPX stimulated the total root length by 30% as against control. Higher section area (by 40%) in root tip, area of xylem (by 150%) or stele-to-section ratio (by 10%) in zone of maturation, and lower section area in zone of lateral roots (by 18%) prove the changes in primary root anatomy and its earlier differentiation at 10 mg/L NPX. Accumulated NPX (up to 10 μg/g DW at 10 mg/L) and products of its metabolization in roots increased the amounts of hydrogen peroxide (by 33%), and superoxide (by 62%), which was reflected in elevated lipid peroxidation (by 32%), disruption of membrane integrity (by 89%) and lowering both oxidoreductase and dehydrogenase activities (by up to 40%). Elevated antioxidant capacity (SOD, APX, and other molecules) under low treatments decreased at 10 mg/L NPX (both by approx. 30%). Naproxen was proved to cause changes at both cellular and tissue levels in roots, which was also reflected in their anatomy and morphology. Higher environmental loading through drugs thus can influence even the root function.
- Klíčová slova
- Antioxidant defence, Non-steroidal anti-inflammatory drug, Oxidative stress, Products of transformation, Root system structure,
- MeSH
- antiflogistika nesteroidní toxicita MeSH
- antioxidancia metabolismus MeSH
- hrách setý účinky léků fyziologie MeSH
- kořeny rostlin MeSH
- naproxen toxicita MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku metabolismus MeSH
- peroxidace lipidů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika nesteroidní MeSH
- antioxidancia MeSH
- naproxen MeSH
- peroxid vodíku MeSH
Early stages of ontogenesis determining subsequent growth, development, and productivity of crops can be affected by wastewater and sludge contaminated with pharmaceuticals. Diclofenac (DCF) and paracetamol (PCT; both 0.0001 to 10 mg/L) did not affect seed germination and primary root length of onion, lettuce, pea, and tomato. Conversely, 20-day-old pea and maize plants exhibited decrease in biomass production, leaf area (by approx. 40% in pea and 70% in maize under 10 mg/L DCF), or content of photosynthetic pigments (by 10% and 60% under 10 mg/L PCT). Quantum yields of photosystem II were reduced only in maize (FV/FM and ΦII by more than 40% under 10 mg/L of both pharmaceuticals). Contents of H2O2 and superoxide increased in roots of both species (more than four times under 10 mg/L PCT in pea). Activities of antioxidant enzymes were elevated in pea under DCF treatments, but decreased in maize under both pharmaceuticals. Oxidative injury of root cells expressed as lowered oxidoreductase activity (MTT assay, by 40% in pea and 80% in maize) and increase in malondialdehyde content (by 60% and 100%) together with the membrane integrity disruption (higher Evans Blue accumulation, by 100% in pea and 300% in maize) confirmed higher sensitivity of maize as a C4 monocot plant to both pharmaceuticals.
- Klíčová slova
- Content of pharmaceuticals, Crop plants, Growth, Nonsteroidal anti-inflammatory drugs, Oxidative stress,
- MeSH
- antioxidancia analýza MeSH
- chemické látky znečišťující vodu toxicita MeSH
- diklofenak analýza toxicita MeSH
- fotosyntéza účinky léků MeSH
- klíčení účinky léků MeSH
- kořeny rostlin účinky léků metabolismus MeSH
- listy rostlin účinky léků MeSH
- malondialdehyd analýza MeSH
- odpadní voda chemie MeSH
- paracetamol analýza toxicita MeSH
- peroxid vodíku analýza metabolismus MeSH
- semena rostlinná účinky léků fyziologie MeSH
- zemědělské plodiny účinky léků růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
- chemické látky znečišťující vodu MeSH
- diklofenak MeSH
- malondialdehyd MeSH
- odpadní voda MeSH
- paracetamol MeSH
- peroxid vodíku MeSH