Nejvíce citovaný článek - PubMed ID 26498711
Cryo-imaging of photosystems and phycobilisomes in Anabaena sp. PCC 7120 cells
The investigation of spatial heterogeneity within the thylakoid membrane (TM) proteins has gained increasing attention in photosynthetic research. The recent advances in live-cell imaging have allowed the identification of heterogeneous organisation of photosystems in small cyanobacterial cells. These sub-micrometre TM regions, termed microdomains in cyanobacteria, exhibit functional similarities with granal (Photosystem II dominant) and stromal (Photosystem I dominant) regions observed in TM of higher plants. This study delves into microdomain heterogeneity using super-resolution Airyscan-based microscopy enhancing resolution to approximately ~125 nm in x-y dimension. The new data reveal membrane areas rich in Photosystem I within the inner TM rings. Moreover, we identified analogous dynamics in the mobility of Photosystem II and phycobilisomes; countering earlier models that postulated differing mobility of these complexes. These novel findings thus hold significance for our understanding of photosynthesis regulation, particularly during state transitions.
- Klíčová slova
- Airyscan, FRAP, cyanobacteria, microdomain, photosystem, protein mobility, super-resolution microscopy, thylakoid membrane heterogeneity,
- Publikační typ
- časopisecké články MeSH
Light plays an essential role in photosynthesis; however, its excess can cause damage to cellular components. Photosynthetic organisms thus developed a set of photoprotective mechanisms (e.g., non-photochemical quenching, photoinhibition) that can be studied by a classic biochemical and biophysical methods in cell suspension. Here, we combined these bulk methods with single-cell identification of microdomains in thylakoid membrane during high-light (HL) stress. We used Synechocystis sp. PCC 6803 cells with YFP tagged photosystem I. The single-cell data pointed to a three-phase response of cells to acute HL stress. We defined: (1) fast response phase (0-30 min), (2) intermediate phase (30-120 min), and (3) slow acclimation phase (120-360 min). During the first phase, cyanobacterial cells activated photoprotective mechanisms such as photoinhibition and non-photochemical quenching. Later on (during the second phase), we temporarily observed functional decoupling of phycobilisomes and sustained monomerization of photosystem II dimer. Simultaneously, cells also initiated accumulation of carotenoids, especially ɣ-carotene, the main precursor of all carotenoids. In the last phase, in addition to ɣ-carotene, we also observed accumulation of myxoxanthophyll and more even spatial distribution of photosystems and phycobilisomes between microdomains. We suggest that the overall carotenoid increase during HL stress could be involved either in the direct photoprotection (e.g., in ROS scavenging) and/or could play an additional role in maintaining optimal distribution of photosystems in thylakoid membrane to attain efficient photoprotection.
- Klíčová slova
- Synechocystis, carotenoids, high light, microdomains, non-photochemical quenching, photoinhibition, photoprotection, photosystems, thylakoid membrane,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- fotosystém I (proteinový komplex) genetika metabolismus MeSH
- fotosystém II (proteinový komplex) genetika metabolismus MeSH
- karotenoidy metabolismus MeSH
- světlo * MeSH
- Synechocystis metabolismus účinky záření MeSH
- tylakoidy metabolismus účinky záření MeSH
- velikost buňky účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH
- karotenoidy MeSH
Biological membranes were originally described as a fluid mosaic with uniform distribution of proteins and lipids. Later, heterogeneous membrane areas were found in many membrane systems including cyanobacterial thylakoids. In fact, cyanobacterial pigment-protein complexes (photosystems, phycobilisomes) form a heterogeneous mosaic of thylakoid membrane microdomains (MDs) restricting protein mobility. The trafficking of membrane proteins is one of the key factors for long-term survival under stress conditions, for instance during exposure to photoinhibitory light conditions. However, the mobility of unbound 'free' proteins in thylakoid membrane is poorly characterized. In this work, we assessed the maximal diffusional ability of a small, unbound thylakoid membrane protein by semi-single molecule FCS (fluorescence correlation spectroscopy) method in the cyanobacterium Synechocystis sp. PCC6803. We utilized a GFP-tagged variant of the cytochrome b6f subunit PetC1 (PetC1-GFP), which was not assembled in the b6f complex due to the presence of the tag. Subsequent FCS measurements have identified a very fast diffusion of the PetC1-GFP protein in the thylakoid membrane (D = 0.14 - 2.95 µm2s-1). This means that the mobility of PetC1-GFP was comparable with that of free lipids and was 50-500 times higher in comparison to the mobility of proteins (e.g., IsiA, LHCII-light-harvesting complexes of PSII) naturally associated with larger thylakoid membrane complexes like photosystems. Our results thus demonstrate the ability of free thylakoid-membrane proteins to move very fast, revealing the crucial role of protein-protein interactions in the mobility restrictions for large thylakoid protein complexes.
- Klíčová slova
- FCS, cyanobacteria, photosynthesis, proteins mobility, thylakoids,
- Publikační typ
- časopisecké články MeSH
Cyanobacteria have developed responses to maintain the balance between the energy absorbed and the energy used in different pigment-protein complexes. One of the relatively rapid (a few minutes) responses is activated when the cells are exposed to high light intensities. This mechanism thermally dissipates excitation energy at the level of the phycobilisome (PB) antenna before it reaches the reaction center. When exposed to low intensities of light that modify the redox state of the plastoquinone pool, the so-called state transitions redistribute energy between photosystem I and II. Experimental techniques to investigate the underlying mechanisms of these responses, such as pulse-amplitude modulated fluorometry, are based on spectrally integrated signals. Previously, a spectrally resolved fluorometry method has been introduced to preserve spectral information. The analysis method introduced in this work allows to interpret SRF data in terms of species-associated spectra of open/closed reaction centers (RCs), (un)quenched PB and state 1 versus state 2. Thus, spectral differences in the time-dependent fluorescence signature of photosynthetic organisms under varying light conditions can be traced and assigned to functional emitting species leading to a number of interpretations of their molecular origins. In particular, we present evidence that state 1 and state 2 correspond to different states of the PB-PSII-PSI megacomplex.
- Klíčová slova
- Cyanobacteria, Singular value decomposition, Spectrally resolved fluorometry, Time-resolved spectroscopy,
- MeSH
- fluorescence MeSH
- fluorescenční spektrometrie MeSH
- fotosystém I (proteinový komplex) metabolismus účinky záření MeSH
- fotosystém II (proteinový komplex) metabolismus účinky záření MeSH
- světlo MeSH
- Synechocystis účinky záření MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fotosystém I (proteinový komplex) MeSH
- fotosystém II (proteinový komplex) MeSH