Nejvíce citovaný článek - PubMed ID 26644454
Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
- Klíčová slova
- DLS, cell line, genotoxicity, micronucleus assay, nanomaterials,
- Publikační typ
- časopisecké články MeSH
Human data concerning exposure to nanoparticles are very limited, and biomarkers for monitoring exposure are urgently needed. In a follow-up of a 2016 study in a nanocomposites plant, in which only exhaled breath condensate (EBC) was examined, eight markers of oxidative stress were analyzed in three bodily fluids, i.e., EBC, plasma and urine, in both pre-shift and post-shift samples in 2017 and 2018. Aerosol exposures were monitored. Mass concentration in 2017 was 0.351 mg/m3 during machining, and 0.179 and 0.217 mg/m3 during machining and welding, respectively, in 2018. In number concentrations, nanoparticles formed 96%, 90% and 59%, respectively. In both years, pre-shift elevations of 50.0% in EBC, 37.5% in plasma and 6.25% in urine biomarkers were observed. Post-shift elevation reached 62.5% in EBC, 68.8% in plasma and 18.8% in urine samples. The same trend was observed in all biological fluids. Individual factors were responsible for the elevation of control subjects' afternoon vs. morning markers in 2018; all were significantly lower compared to those of workers. Malondialdehyde levels were always acutely shifted, and 8-hydroxy-2-deoxyguanosine levels best showed chronic exposure effect. EBC and plasma analysis appear to be the ideal fluids for bio-monitoring of oxidative stress arising from engineered nanomaterials. Potential late effects need to be targeted and prevented, as there is a similarity of EBC findings in patients with silicosis and asbestosis.
- Klíčová slova
- biomarkers, controls, exhaled breath condensate, nanoparticles, oxidative stress, plasma, urine, workers,
- Publikační typ
- časopisecké články MeSH
The aim of this study was to ascertain whether long-term occupational exposure to nanoparticles would affect relative leukocyte telomere length (LrTL). We analysed occupational exposure to size-resolved aerosol particles, with special emphasis on nanoparticles at two workshops: i/ the production of nanocomposites containing metal oxides; ii/ laboratory to test experimental exposure of nano-CuO to rodents. Thirty five exposed researchers (age 39.5 ± 12.6 yr; exposure duration 6.0 ± 3.7 yr) and 43 controls (40.4 ± 10.5 yr) were examined. LrTL did not significantly (p=0.14) differ between the exposed researchers (0.92 ± 0.13) and controls (0.86 ± 0.15). In addition, no significant correlation (r=-0.22, p=0.22) was detected between the duration of occupational exposure and LrTL. The results remained non-significant after multiple adjustments for age, sex and smoking status. Our pilot results suggest that relative leukocyte telomere length is not affected by occupational exposure to nanoparticles.
- Klíčová slova
- Follow-up, Metal nanoparticles, Telomere length,
- MeSH
- dospělí MeSH
- kovové nanočástice škodlivé účinky MeSH
- látky znečišťující vzduch v pracovním prostředí škodlivé účinky MeSH
- leukocyty MeSH
- lidé středního věku MeSH
- lidé MeSH
- oxidy MeSH
- pracovní expozice škodlivé účinky MeSH
- výzkumní pracovníci * MeSH
- zkracování telomer účinky léků MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- látky znečišťující vzduch v pracovním prostředí MeSH
- oxidy MeSH
The present pilot study tested the efficiency of nanoTiO2 sunscreen to prevent the oxidative stress/inflammation caused by ultraviolet (UV) radiation using biomarkers in subjects' blood, urine, and exhaled breath condensate (EBC). In addition, the skin absorption of nanoTiO2 was studied. Six identical subjects participated in three tests: (A) nanoTiO2 sunscreen, (B) UV radiation, and (C) sunscreen + UV. The first samples were collected before the test and the second after sunscreen application and/or UV exposure. On day 4, the third samples were collected, and the sunscreen was washed off, and the fourth samples were collected on day 11. The following biomarkers were measured: malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, aldehydes C6-C12, 8-iso-Prostaglandin F2α, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, and leukotrienes, using liquid chromatography-electrospray ionisation-tandem mass spectrometry. Titania was measured using inductively coupled plasma mass spectrometry and TiO2 nanoparticles by transmission and scanning electron microscopy. Sunscreen alone did not elevate the markers, but UV increased the biomarkers in the plasma, urine, and EBC. The sunscreen prevented skin redness, however it did not inhibit the elevation of oxidative stress/inflammatory markers. Titania and nanoTiO2 particles were found in the plasma and urine (but not in the EBC) in all sunscreen users, suggesting their skin absorption.
Thousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m³ to 1.840 mg/m³ during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 10⁴ to 5.4 × 10⁵ particles/cm³. The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p ˂ 0.05). Post-shift EBC samples were higher for TNF (p ˂ 0.001), LTB4 (p ˂ 0.001), and LTE4 (p ˂ 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p ˂ 0.001), LTE4 (p ˂ 0.05), and TNF (p ˂ 0.001), in addition to pre-shift LTD4 and LXB4 (both p ˂ 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.
- Klíčová slova
- FeNO, exhaled breath condensate (EBC), inflammation, nanocomposites, nanoparticles, spirometry,
- Publikační typ
- časopisecké články MeSH
Researchers in nanocomposite processing may inhale a variety of chemical agents, including nanoparticles. This study investigated airway oxidative stress status in the exhaled breath condensate (EBC). Nineteen employees (42.4 ± 11.4 y/o), working in nanocomposites research for 18.0 ± 10.3 years were examined pre-shift and post-shift on a random workday, together with nineteen controls (45.5 ± 11.7 y/o). Panels of oxidative stress biomarkers derived from lipids, nucleic acids, and proteins were analyzed in the EBC. Aerosol exposures were monitored during three major nanoparticle generation operations: smelting and welding (workshop 1) and nanocomposite machining (workshop 2) using a suite of real-time and integrated instruments. Mass concentrations during these operations were 0.120, 1.840, and 0.804 mg/m³, respectively. Median particle number concentrations were 4.8 × 10⁴, 1.3 × 10⁵, and 5.4 × 10⁵ particles/cm³, respectively. Nanoparticles accounted for 95, 40, and 61%, respectively, with prevailing Fe and Mn. All markers of nucleic acid and protein oxidation, malondialdehyde, and aldehydes C₆⁻C13 were elevated, already in the pre-shift samples relative to controls in both workshops. Significant post-shift elevations were documented in lipid oxidation markers. Significant associations were found between working in nanocomposite synthesis and EBC biomarkers. More research is needed to understand the contribution of nanoparticles from nanocomposite processing in inducing oxidative stress, relative to other co-exposures generated during welding, smelting, and secondary oxidation processes, in these workshops.
- Klíčová slova
- exhaled breath condensate, inhalation, nanocomposites, nanoparticles, occupational exposure, oxidative stress, workers,
- Publikační typ
- časopisecké články MeSH