Nejvíce citovaný článek - PubMed ID 26725215
Fluorescence-based biosensor for monitoring of environmental pollutants: From concept to field application
The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. KEY POINTS: • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement.
- Klíčová slova
- Agriculture and food industry, Bio-chemiluminescence, Biosensors, Carbon nanotubes, Diseases, Environmental application, Graphene, Pollution,
- MeSH
- biosenzitivní techniky * MeSH
- grafit * MeSH
- luminiscence MeSH
- nanotrubičky uhlíkové * MeSH
- povrchová plasmonová rezonance MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- grafit * MeSH
- nanotrubičky uhlíkové * MeSH
Haloalkane dehalogenases (HLDs) convert halogenated aliphatic pollutants to less toxic compounds by a hydrolytic mechanism. Owing to their broad substrate specificity and high enantioselectivity, haloalkane dehalogenases can function as biosensors to detect toxic compounds in the environment or can be used for the production of optically pure compounds. Here, the structural analysis of the haloalkane dehalogenase DpcA isolated from the psychrophilic bacterium Psychrobacter cryohalolentis K5 is presented at the atomic resolution of 1.05 Å. This enzyme exhibits a low temperature optimum, making it attractive for environmental applications such as biosensing at the subsurface environment, where the temperature typically does not exceed 25°C. The structure revealed that DpcA possesses the shortest access tunnel and one of the most widely open main tunnels among structural homologs of the HLD-I subfamily. Comparative analysis revealed major differences in the region of the α4 helix of the cap domain, which is one of the key determinants of the anatomy of the tunnels. The crystal structure of DpcA will contribute to better understanding of the structure-function relationships of cold-adapted enzymes.
- Klíčová slova
- Psychrobacter cryohalolentis, X-ray diffraction, haloalkane dehalogenase, psychrophiles, structural analysis, α/β-hydrolase,
- MeSH
- bakteriální proteiny chemie genetika metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- exprese genu MeSH
- genetické vektory chemie metabolismus MeSH
- halogenované uhlovodíky chemie metabolismus MeSH
- hydrolasy chemie genetika metabolismus MeSH
- interakční proteinové domény a motivy MeSH
- klonování DNA MeSH
- konformace proteinů, alfa-helix MeSH
- konformace proteinů, beta-řetězec MeSH
- krystalografie rentgenová MeSH
- nízká teplota MeSH
- Psychrobacter chemie enzymologie MeSH
- rekombinantní fúzní proteiny chemie genetika metabolismus MeSH
- sekvence aminokyselin MeSH
- simulace molekulového dockingu MeSH
- strukturní homologie proteinů MeSH
- substrátová specifita MeSH
- termodynamika MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 1-bromohexane MeSH Prohlížeč
- bakteriální proteiny MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- halogenované uhlovodíky MeSH
- hydrolasy MeSH
- rekombinantní fúzní proteiny MeSH
Analytical devices that combine sensitive biological component with a physicochemical detector hold a great potential for various applications, e.g., environmental monitoring, food analysis or medical diagnostics. Continuous efforts to develop inexpensive sensitive biodevices for detecting target substances typically focus on the design of biorecognition elements and their physical implementation, while the methods for processing signals generated by such devices have received far less attention. Here, we present fundamental considerations related to signal processing in biosensor design and investigate how undemanding signal treatment facilitates calibration and operation of enzyme-based biodevices. Our signal treatment approach was thoroughly validated with two model systems: (i) a biodevice for detecting chemical warfare agents and environmental pollutants based on the activity of haloalkane dehalogenase, with the sensitive range for bis(2-chloroethyl) ether of 0.01-0.8 mM and (ii) a biodevice for detecting hazardous pesticides based on the activity of γ-hexachlorocyclohexane dehydrochlorinase with the sensitive range for γ-hexachlorocyclohexane of 0.01-0.3 mM. We demonstrate that the advanced signal processing based on curve fitting enables precise quantification of parameters important for sensitive operation of enzyme-based biodevices, including: (i) automated exclusion of signal regions with substantial noise, (ii) derivation of calibration curves with significantly reduced error, (iii) shortening of the detection time, and (iv) reliable extrapolation of the signal to the initial conditions. The presented simple signal curve fitting supports rational design of optimal system setup by explicit and flexible quantification of its properties and will find a broad use in the development of sensitive and robust biodevices.
- MeSH
- biosenzitivní techniky metody MeSH
- chemické bojové látky analýza MeSH
- chlorované uhlovodíky analýza MeSH
- enzymy metabolismus MeSH
- ether analogy a deriváty analýza MeSH
- hexany analýza MeSH
- hydrolasy metabolismus MeSH
- kalibrace MeSH
- látky znečišťující životní prostředí analýza MeSH
- lyasy metabolismus MeSH
- počítačové zpracování signálu * MeSH
- senzitivita a specificita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 1-chlorohexane MeSH Prohlížeč
- bis(2-chloroethyl)ether MeSH Prohlížeč
- chemické bojové látky MeSH
- chlorované uhlovodíky MeSH
- dehydrochlorinases MeSH Prohlížeč
- enzymy MeSH
- ether MeSH
- haloalkane dehalogenase MeSH Prohlížeč
- hexany MeSH
- hydrolasy MeSH
- látky znečišťující životní prostředí MeSH
- lyasy MeSH