Most cited article - PubMed ID 26989015
The impact of subsistence changes on humeral bilateral asymmetry in Terminal Pleistocene and Holocene Europe
Experimental grinding has been used to study the relationship between human humeral robusticity and cereal grinding in the early Holocene. However, such replication studies raise two questions regarding the robusticity of the results: whether female nonathletes used in previous research are sufficiently comparable to early agricultural females, and whether previous analysis of muscle activation of only four upper limb muscles is sufficient to capture the stress of cereal grinding on upper limb bones. We test the influence of both of these factors. Electromyographic activity of eight upper limb muscles was recorded during cereal grinding in an athletic sample of 10 female rowers and in 25 female nonathletes and analyzed using both an eight- and four-muscle model. Athletes had lower activation than nonathletes in the majority of measured muscles, but except for posterior deltoid these differences were non-significant. Furthermore, both athletes and nonathletes had lower muscle activation during saddle quern grinding than rotary quern grinding suggesting that the nonathletes can be used to model early agricultural females during saddle and rotary quern grinding. Similarly, in both eight- and four-muscle models, upper limb loading was lower during saddle quern grinding than during rotary quern grinding, suggesting that the upper limb muscles may be reduced to the previously used four-muscle model for evaluation of the upper limb loading during cereal grinding. Another implication of our measurements is to question the assumption that skeletal indicators of high involvement of the biceps brachii muscle can be interpreted as specifically indicative of saddle quern grinding.
- MeSH
- Exercise physiology MeSH
- Edible Grain MeSH
- Muscle, Skeletal physiology MeSH
- Humans MeSH
- Food Handling * instrumentation MeSH
- Adolescent MeSH
- Young Adult MeSH
- Arm physiology MeSH
- Movement physiology MeSH
- Athletes MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Derivation of periosteal and endosteal contours taken from transversal long bone cross-sections limits the accuracy of calculated biomechanical properties. Although several techniques are available for deriving both contours, the effect of these techniques on accuracy of calculated cross-sectional properties in non-adults is unknown. We examine a sample of 86 non-adult femora from birth to 12 years of age to estimate the effect of error in deriving periosteal and endosteal contours on cross-sectional properties. Midshaft cross-sections were taken from microCT scans and contours were derived using manual, fully automatic, spline, and ellipse techniques. Agreement between techniques was assessed against manually traced periosteal and endosteal contours using percent prediction error (%PE), reduced major axis analysis, and limits of agreement. The %PEs were highest in the medullary area and lowest in the total area. Mean %PEs were sufficiently below the 5% level of acceptable error, except for medullary areas, but individual values can greatly exceed this 5% boundary given the high standard deviation of %PE means and wide minimum-maximum range of %PEs. Automatic processing produces greater errors than does combination with manual, spline, and ellipse processing. Although periosteal contour is estimated with stronger agreement compared with endosteal contour, error in deriving periosteal contour has a substantially greater effect on calculated section moduli than does error in deriving endosteal contours. We observed no size effect on the resulting bias. Nevertheless, cross-sectional properties in a younger age category may be estimated with greater error compared with in an older age category. We conclude that non-adult midshaft cross-sectional properties can be derived from microCT scans of femoral diaphyses with mean error of < 5% and that derivation of endosteal contour can be simplified by the ellipse technique because fully automatic derivation of endosteal contour may increase the resulting error, especially in small samples.
- Keywords
- EPmacroJ, ImageJ, biomechanics, femora, microCT,
- Publication type
- Journal Article MeSH