Nejvíce citovaný článek - PubMed ID 27157763
Antibacterial properties of modified biodegradable PHB non-woven fabric
The construction of functional micro- or nanostructured surfaces is extensively studied since they are able to provide multifunctional properties and for large variety of potential applications in fields such as tissue engineering, wearable electronics or microfluidics. The micro- or nanosized surfaces can be easily prepared by various lithography techniques, also additional modifications (laser exposure, metal deposition and further processing) and which can induce new applicable properties on the basis of synergic effect by combining aforementioned approaches. In this work we have focused on the polytetrafluoroethylene (PTFE) nanotextile with specific bimetallic nanostructures. Our primary target was to find optimal surface modification of silver/gold coated surface, which would induce strong antibacterial response to both gram-positive and/or gram-negative bacteria. We have used plasma-modified polytetrafluoroethylene nanotextile as a substrate, onto which silver and gold nanolayers were deposited by sputtering. The foils were further subjected to "single-shot" exposure to an excimer KrF laser and some samples were also thermally stressed before exposure. Such surfaces were further examined in terms of surface morphology and chemical composition. The surface was investigated for antibacterial properties. Their antimicrobial activity was examined in vitro against the bacteria Escherichia coli and Staphylococcus epidermidis strains. The surface of the prepared materials was replicated into a lactic acid polymer and the properties were again investigated in terms of surface morphology and surface chemistry. The results demonstrated construction of antibacterial surfaces with excellent resistance to bacteria E. coli for bimetallic structures on PTFE. Excimer laser induced bimetallic pattern exhibited also significant antibacterial properties for S. epidermidis. Replication of bimetallic pattern was also demonstrated.
- Klíčová slova
- Antibacterial properties, Bimetallic nanopattern, Laser exposure, Nanostructure, Nanotextile, Noble metal, PTFE, Polymer, Replication,
- Publikační typ
- časopisecké články MeSH
This study involved the preparation and characterization of structures with a honeycomb-like pattern (HCP) formed using the phase separation method using a solution mixture of chloroform and methanol together with cellulose acetate. Fluorinated ethylene propylene modified by plasma treatment was used as a suitable substrate for the formation of the HCP structures. Further, we modified the HCP structures using silver sputtering (discontinuous Ag nanoparticles) or by adding Ag nanoparticles in PEG into the cellulose acetate solution. The material morphology was then determined using atomic force microscopy (AFM) and scanning electron microscopy (SEM), while the material surface chemistry was studied using energy dispersive spectroscopy (EDS) and wettability was analyzed with goniometry. The AFM and SEM results revealed that the surface morphology of pristine HCP with hexagonal pores changed after additional sample modification with Ag, both via the addition of nanoparticles and sputtering, accompanied with an increase in the roughness of the PEG-doped samples, which was caused by the high molecular weight of PEG and its gel-like structure. The highest amount (approx. 25 at %) of fluorine was detected using the EDS method on the sample with an HCP-like structure, while the lowest amount (0.08%) was measured on the PEG + Ag sample, which revealed the covering of the substrate with biopolymer (the greater fluorine extent means more of the fluorinated substrate is exposed). As expected, the thickness of the Ag layer on the HCP surface depended on the length of sputtering (either 150 s or 500 s). The sputtering times for Ag (150 s and 500 s) corresponded to layers with heights of about 8 nm (3.9 at % of Ag) and 22 nm (10.8 at % of Ag), respectively. In addition, we evaluated the antibacterial potential of the prepared substrate using two bacterial strains, one Gram-positive of S. epidermidis and one Gram-negative of E. coli. The most effective method for the construction of antibacterial surfaces was determined to be sputtering (150 s) of a silver nanolayer onto a HCP-like cellulose structure, which proved to have excellent antibacterial properties against both G+ and G- bacterial strains.
The subjects of this work were the enhancement and determination of the stability and other properties of gold nanoparticles (AuNPs) in an aqueous solution, gold nanoparticle immobilization, and further surface grafting on polyethylene naphthalate (PEN). Gold nanoparticles in PEG with a subsequent water solution addition were prepared using cathode sputtering; for the subsequent surface activation, two different solutions were used: (i) sodium citrate dihydrate (TCD) and (ii) N-acetyl-L-cysteine (NALC). The aim of this work was to study the effect of the concentration of these solutions on AuNPs stability, and further, the effect of the concentration of gold nanoparticles and their morphology, and to describe the aging process of solutions, namely, the optical properties of samples over 28 days. Stabilized AuNPs were prepared in an N-acetyl-L-cysteine (NALC) system and subsequently immobilized with NALC. The surface chemistry modification of AuNPs was confirmed using HRTEM/EDS. Gold nanoparticles were successfully immobilized with NALC. Grafting of the modified PEN from a solution of colloidal gold stabilized in the PEG-H2O-NALC system led to the polymer surface functionalization.
- Klíčová slova
- grafting, nanoparticles, noble metal, plasma modification, polymer, sputtering,
- Publikační typ
- časopisecké články MeSH
The versatile family of nanoparticles is considered to have a huge impact on the different fields of materials research, mostly nanoelectronics, catalytic chemistry and in study of cytocompatibility, targeted drug delivery and tissue engineering. Different approaches for nanoparticle preparation have been developed, not only based on "bottom up" and "top down" techniques, but also several procedures of effective nanoparticle modifications have been successfully used. This paper is focused on different techniques of nanoparticles' preparation, with primary focus on metal nanoparticles. Dispergation methods such as laser ablation and vacuum sputtering are introduced. Condensation methods such as reduction with sodium citrate, the Brust-Schiffrin method and approaches based on ultraviolet light or biosynthesis of silver and gold are also discussed. Basic properties of colloidal solutions are described. Also a historical overview of nanoparticles are briefly introduced together with short introduction to specific properties of nanoparticles and their solutions.
- Klíčová slova
- nanoparticle, noble metal, preparation, surface,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces-mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.
- Klíčová slova
- antimicrobial properties, laser treatment, nanoparticles, nanoscale design, plasma exposure, surface modification, tissue engineering,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH