Nejvíce citovaný článek - PubMed ID 27217748
Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles
BACKGROUND: Endothelial progenitor cells (EPCs) were indicated in vascular repair, angiogenesis of ischemic organs, and inhibition of formation of initial hyperplasia. Differentiation of endothelial cells (ECs) from human induced pluripotent stem cells (hiPSC)-derived endothelial cells (hiPSC-ECs) provides an unlimited supply for clinical application. Furthermore, magnetic cell labelling offers an effective way of targeting and visualization of hiPSC-ECs and is the next step towards in vivo studies. METHODS: ECs were differentiated from hiPSCs and labelled with uncoated superparamagnetic iron-oxide nanoparticles (uSPIONs). uSPION uptake was compared between hiPSC-ECs and mature ECs isolated from patients by software analysis of microscopy pictures after Prussian blue cell staining. The acute and long-term cytotoxic effects of uSPIONs were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay) and Annexin assay. RESULTS: We showed, for the first time, uptake of uncoated SPIONs (uSPIONs) by hiPSC-ECs. In comparison with mature ECs of identical genetic background hiPSC-ECs showed lower uSPION uptake. However, all the studied endothelial cells were effectively labelled and showed magnetic properties even with low labelling concentration of uSPIONs. uSPIONs prepared by microwave plasma synthesis did not show any cytotoxicity nor impair endothelial properties. CONCLUSION: We show that hiPSC-ECs labelling with low concentration of uSPIONs is feasible and does not show any toxic effects in vitro, which is an important step towards animal studies.
- Klíčová slova
- differentiation, human induced pluripotent stem cell-derived endothelial cells, mature endothelial cells, reprogramming, superparamagnetic iron-oxide nanoparticles,
- MeSH
- biologické markery MeSH
- buněčná diferenciace * MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- endoteliální buňky cytologie metabolismus ultrastruktura MeSH
- imunohistochemie MeSH
- indukované pluripotentní kmenové buňky cytologie metabolismus ultrastruktura MeSH
- kultivované buňky MeSH
- lidé MeSH
- magnetické nanočástice * chemie MeSH
- viabilita buněk MeSH
- železité sloučeniny * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- ferric oxide MeSH Prohlížeč
- magnetické nanočástice * MeSH
- železité sloučeniny * MeSH
Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-labeled cells can be used as a non-invasive technique to track stem cells after transplantation. The aim of this study was to (1) evaluate labeling efficiency of D-mannose-coated maghemite nanoparticles (D-mannose(γ-Fe2O3)) in neural stem cells (NSCs) in comparison to the uncoated nanoparticles, (2) assess nanoparticle utilization as MRI contrast agent to visualize NSCs transplanted into the mouse brain, and (3) test nanoparticle biocompatibility. D-mannose(γ-Fe2O3) labeled the NSCs better than the uncoated nanoparticles. The labeled cells were visualized by ex vivo MRI and their localization subsequently confirmed on histological sections. Although the progenitor properties and differentiation of the NSCs were not affected by labeling, subtle effects on stem cells could be detected depending on dose increase, including changes in cell proliferation, viability, and neurosphere diameter. D-mannose coating of maghemite nanoparticles improved NSC labeling and allowed for NSC tracking by ex vivo MRI in the mouse brain, but further analysis of the eventual side effects might be necessary before translation to the clinic.
- Klíčová slova
- brain, maghemite, magnetic resonance imaging, mouse, nanoparticles, neural stem cells,
- MeSH
- buněčný tracking metody MeSH
- magnetická rezonanční tomografie metody MeSH
- magnetické nanočástice chemie MeSH
- mannosa chemie MeSH
- mozek cytologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nervové kmenové buňky cytologie transplantace MeSH
- železité sloučeniny chemie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ferric oxide MeSH Prohlížeč
- magnetické nanočástice MeSH
- mannosa MeSH
- železité sloučeniny MeSH
Manganese-zinc ferrite nanoparticles were synthesized by using a hydrothermal treatment, coated with silica, and then tested as efficient cellular labels for cell tracking, using magnetic resonance imaging (MRI) in vivo. A toxicity study was performed on rat mesenchymal stem cells and C6 glioblastoma cells. Adverse effects on viability and cell proliferation were observed at the highest concentration (0.55 mM) only; cell viability was not compromised at lower concentrations. Nanoparticle internalization was confirmed by transmission electron microscopy. The particles were found in membranous vesicles inside the cytoplasm. Although the metal content (0.42 pg Fe/cell) was lower compared to commercially available iron oxide nanoparticles, labeled cells reached a comparable relaxation rate R 2, owing to higher nanoparticle relaxivity. Cells from transgenic luciferase-positive rats were used for in vivo experiments. Labeled cells were transplanted into the muscles of non-bioluminescent rats and visualized by MRI. The cells produced a distinct hypointense signal in T2- or T2*-weighted MR images in vivo. Cell viability in vivo was verified by bioluminescence.
- Klíčová slova
- cell labeling, cell transplantation, doping, magnetic resonance imaging, nanoparticles,
- Publikační typ
- časopisecké články MeSH
Nanoparticles (NPs) are currently used in diagnosis and treatment of many human diseases, including autoimmune diseases and cancer. However, cytotoxic effects of NPs on normal cells and living organs is a severe limiting factor that hinders their use in clinic. In addition, diversity of NPs and their physico-chemical properties, including particle size, shape, surface area, dispersity and protein corona effects are considered as key factors that have a crucial impact on their safe or toxicological behaviors. Current studies on toxic effects of NPs are aimed to identify the targets and mechanisms of their side effects, with a focus on elucidating the patterns of NP transport, accumulation, degradation, and elimination, in both in vitro and in vitro models. NPs can enter the body through inhalation, skin and digestive routes. Consequently, there is a need for reliable information about effects of NPs on various organs in order to reveal their efficacy and impact on health. This review covers the existing knowledge base on the subject that hopefully prepares us better to address these challenges.
- Klíčová slova
- nanoparticles, organ-specific effects, toxicological effects,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH