Most cited article - PubMed ID 27287067
Stealth Amphiphiles: Self-Assembly of Polyhedral Boron Clusters
Organic amines are found to be abundant in natural living systems. They also constitute an inestimable family of building blocks available in drug design. Considering the man-made cluster [(1,2-C2B9H11)2-3,3'-Co(III)]- ion (1-) and its application as an emerging unconventional pharmacophore, the availability of the corresponding amines has been limited and those with amino groups attached directly to carbon atoms have remained unknown. This paper describes the synthesis of compounds containing one or two primary amino groups attached to the carbon atoms of the cobaltacarborane cage that are accessible via the reduction of newly synthesized azides or via the Curtius rearrangement of the corresponding acyl azide. This substitution represents the first members of the series of azides and primary amines with functional groups bound directly to the carbon atoms of the cage. As expected, the absence of the linker along with the presence of the bulky anionic polyhedral ion leads to a significant alteration of the chemical and physicochemical properties. On a broader series of amines of the ion 1- we have thus observed significant differences in the acidity of the amino groups, depending on whether these are attached to the carbon or boron atoms of the cage, or the C-substituted amines contain an aliphatic linker of variable length. The compounds are relevant for potential use as cobalt bis(dicarbollide) structural blocks in medicinal chemistry and material science. Our study includes single-crystal X-ray diffraction (XRD) structures of both amines and a discussion of their stereochemical and structural features.
- Publication type
- Journal Article MeSH
The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.
- Keywords
- borane, carborane, cobalt bis(dicarbollide), dicarbollide, lithiation, metalation,
- Publication type
- Journal Article MeSH
- Review MeSH
Cobalt bisdicarbollides (COSANs) are inorganic boron-based anions that have been previously reported to permeate by themselves through lipid bilayer membranes, a propensity that is related to their superchaotropic character. We now introduce their use as selective and efficient molecular carriers of otherwise impermeable hydrophilic oligopeptides through both artificial and cellular membranes, without causing membrane lysis or poration at low micromolar carrier concentrations. COSANs transport not only arginine-rich but also lysine-rich peptides, whereas low-molecular-weight analytes such as amino acids as well as neutral and anionic cargos (phalloidin and BSA) are not transported. In addition to the unsubstituted isomers (known as ortho- and meta-COSAN), four derivatives bearing organic substituents or halogen atoms have been evaluated, and all six of them surpass established carriers such as pyrenebutyrate in terms of activity. U-tube experiments and black lipid membrane conductance measurements establish that the transport across model membranes is mediated by a molecular carrier mechanism. Transport experiments in living cells showed that a fluorescent peptide cargo, FITC-Arg8, is delivered into the cytosol.
- MeSH
- Anions metabolism MeSH
- Cell Membrane metabolism MeSH
- Cobalt * metabolism MeSH
- Lipid Bilayers chemistry MeSH
- Peptides * chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anions MeSH
- Cobalt * MeSH
- Lipid Bilayers MeSH
- Peptides * MeSH
In this study we explore the effect on the electrochemical signals in aqueous buffers of the presence of hydrophilic alkylhydroxy and carboxy groups on the carbon atoms of cobalta bis(dicarbollide) ions. The oxygen-containing exo-skeletal substituents of cobalta bis(dicarbollide) ions belong to the perspective building blocks that are considered for bioconjugation. Carbon substitution provides wider versatility and applicability in terms of the flexibility of possible chemical pathways. However, until recently, the electrochemistry of compounds substituted only on boron atoms could be studied, due to the unavailability of carbon-substituted congeners. In the present study, electrochemistry in aqueous phosphate buffers is considered along with the dependence of electrochemical response on pH and concentration. The compounds used show electrochemical signals around -1.3 and +1.1 V of similar or slightly higher intensities than in the parent cobalta bis(dicarbollide) ion. The signals at positive electrochemical potential correspond to irreversible oxidation of the boron cage (the C2B9 building block) and at negative potential correspond to the reversible redox process of (CoIII/CoII) at the central atom. Although the first signal is typically sharp and its potential can be altered by a number of substituents, the second signal is complex and is composed of three overlapping peaks. This signal shows sigmoidal character at higher concentrations and may be used as a diagnostic tool for aggregation in solution. Surprisingly enough, the observed effects of the site of substitution (boron or carbon) and between individual groups on the electrochemical response were insignificant. Therefore, the substitutions would preserve promising properties of the parent cage for redox labelling, but would not allow for the further tuning of signal position in the electrochemical window.
- Keywords
- cobalta bis(dicarbollide) ions, differential pulse voltammetry, glassy carbon electrode, metallacarborane,
- MeSH
- Boron * chemistry MeSH
- Electrochemistry MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Carbon * MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Boron * MeSH
- Carbon * MeSH
- Water MeSH
The supramolecular recognition of closo,closo-[B21 H18 ]- by cyclodextrins (CDs) has been studied in aqueous solution by isothermal titration calorimetry and nuclear magnetic resonance spectroscopy. These solution studies follow up on previous mass-spectrometric measurements and computations, which indicated the formation and stability of CD ⋅ B21 H18- complexes in the gas phase. The thermodynamic signature of solution-phase binding is exceptional, the association constant for the γ-CD complex with B21 H18- reaches 1.8×106 M-1 , which is on the same order of magnitude as the so far highest observed value for the complex between γ-CD and a metallacarborane. The nature of the intermolecular interaction is also examined by quantum-mechanical computational protocols. These suggest that the desolvation penalty, which is particularly low for the B21 H18- anion, is the decisive factor for its high binding strength. The results further suggest that the elliptical macropolyhedral boron hydride is another example of a CD binder, whose extraordinary binding affinity is driven by the chaotropic effect, which describes the intrinsic affinity of large polarizable and weakly solvated chaotropic anions to hydrophobic cavities and surfaces in aqueous solution.
- Keywords
- anion binding, boron clusters, desolvation, host-guest chemistry, intermolecular interactions,
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH