Nejvíce citovaný článek - PubMed ID 27716026
Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes
Fermentation, a traditional method for enhancing nutritional value and functionality, has significant potential for improving the quality, safety and acceptability of farmed insect products. In this study, yellow mealworm, house cricket and migratory locust were fermented using Lactobacillus plantarum and a commercial starter culture for 48 h. Samples were analyzed for proximate composition, amino and fatty acid profiles, elemental composition and oxidation stability. Fermentation reduced total dietary fiber in yellow mealworm (33%) and house cricket (12%), and increased non-protein nitrogen (38% and 16%), while total and protein nitrogen remained unaffected. Fatty acid profiles also remained unchanged, whereas the amino acid composition varied depending on the species and fermentation culture. Essential mineral concentrations varied depending on species and fermentation culture Fe (19-23%), K (25%), Mg (12-23%), Mn (36-378%), Na (20-49%) and P (22%) increased, levels of Se (15%), and Cu (16%) decreased, while Zn levels showed inconsistent trends among treatments. Oxidation stability of yellow mealworm (41-42%) and migratory locust (21-29%) decreased, but improved for house cricket (153-167%). Overall, fermentation enhanced the nutritional value of edible insects, although the extent of improvement varied by species and fermentation culture.
- Klíčová slova
- amino acids, edible insects, elemental composition, fatty acids, fermentation, nutritional value, oxidation stability,
- Publikační typ
- časopisecké články MeSH
Arf and Rab family small GTPases and their regulators, GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs), play a central role in membrane trafficking. In this study, we focused on a recently reported GAP for Arf (and potentially Rab) proteins, the CSW complex, a part of a small family of longin domain-containing proteins that form complexes with GAP activity. This family also includes folliculin and GATOR1, which are GAPs for the Rag/Gtr GTPases. All three complexes are associated with lysosomes and play a role in nutrient signaling, the latter two being directly involved in the mTOR pathway. The role of CSW is not clear, but in addition to having GAP activity on Arf proteins in vitro, its mutation causes severe neurodegenerative diseases. Here we update the reported pan-eukaryotic presence of folliculin and GATOR1, and demonstrate that CSW is also found throughout eukaryotes, though with sporadic distribution. We identify highly conserved motifs in all CSW subunits, some shared with the catalytic subunits of folliculin and GATOR1, that provide new potential avenues for experimental exploration. Remarkably, one such conserved sequence, the "GP" motif, is also found in structurally related longin proteins present in the archaeal ancestor of eukaryotes.
- Klíčová slova
- Arf GTPases, DENN domain, GTPase‐activating proteins, LECA, molecular phylogenetics, nutrient signaling, pan‐eukaryotic homology search, structural modeling,
- MeSH
- lidé MeSH
- monomerní proteiny vázající GTP * metabolismus MeSH
- proteinové domény MeSH
- proteiny aktivující GTPasu * metabolismus genetika chemie MeSH
- výměnné faktory guaninnukleotidů metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- monomerní proteiny vázající GTP * MeSH
- proteiny aktivující GTPasu * MeSH
- výměnné faktory guaninnukleotidů MeSH
The notion that mitochondria cannot be lost was shattered with the report of an oxymonad Monocercomonoides exilis, the first eukaryote arguably without any mitochondrion. Yet, questions remain about whether this extends beyond the single species and how this transition took place. The Oxymonadida is a group of gut endobionts taxonomically housed in the Preaxostyla which also contains free-living flagellates of the genera Trimastix and Paratrimastix. The latter two taxa harbour conspicuous mitochondrion-related organelles (MROs). Here we report high-quality genome and transcriptome assemblies of two Preaxostyla representatives, the free-living Paratrimastix pyriformis and the oxymonad Blattamonas nauphoetae. We performed thorough comparisons among all available genomic and transcriptomic data of Preaxostyla to further decipher the evolutionary changes towards amitochondriality, endobiosis, and unstacked Golgi. Our results provide insights into the metabolic and endomembrane evolution, but most strikingly the data confirm the complete loss of mitochondria for all three oxymonad species investigated (M. exilis, B. nauphoetae, and Streblomastix strix), suggesting the amitochondriate status is common to a large part if not the whole group of Oxymonadida. This observation moves this unique loss to 100 MYA when oxymonad lineage diversified.
- MeSH
- Eukaryota * genetika MeSH
- fylogeneze MeSH
- genomika MeSH
- mitochondrie genetika MeSH
- Oxymonadida * genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.
- Klíčová slova
- LOPIT, Paratrimastix, glycine cleavage system, methionine cycle, mitochondrion-related organelle, one-carbon metabolism, proteome, spatial proteomics,
- MeSH
- Eukaryota metabolismus MeSH
- methionin * MeSH
- mitochondrie * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- methionin * MeSH
BACKGROUND: The Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles. RESULTS: We find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways. CONCLUSIONS: The loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.
- Klíčová slova
- Comparative genomics, Diplonemea, Euglenida, Evolution, Kinetochores, Kinetoplastea, Metabolism, Trypanothione,
- MeSH
- biologická evoluce * MeSH
- Euglenida genetika metabolismus MeSH
- Euglenozoa genetika metabolismus MeSH
- genom protozoální * MeSH
- Kinetoplastida genetika metabolismus MeSH
- molekulární evoluce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
- Klíčová slova
- Monocercomonoides, oxymonads, protist genomics, amitochondrial eukaryote, cell biology,
- MeSH
- genom protozoální * MeSH
- intracelulární membrány * MeSH
- introny MeSH
- mikrofilamenta MeSH
- mitochondriální dynamika MeSH
- Oxymonadida enzymologie genetika ultrastruktura MeSH
- proteom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteom MeSH