UNLABELLED: Trypanosomatids are among the most extensively studied protists due to their parasitic interactions with insects, vertebrates, and plants. Recently, Blastocrithidia nonstop was found to depart from the canonical genetic code, with all three stop codons reassigned to encode amino acids (UAR for glutamate and UGA for tryptophan), and UAA having dual meaning also as a termination signal (glutamate and stop). To explore features linked to this phenomenon, we analyzed the genomes of four Blastocrithidia and four Obscuromonas species, the latter representing a sister group employing the canonical genetic code. We found that all Blastocrithidia species encode cognate tRNAs for UAR codons, possess a distinct 4 bp anticodon stem tRNATrpCCA decoding UGA, and utilize UAA as the only stop codon. The distribution of in-frame reassigned codons is consistently non-random, suggesting a translational burden avoided in highly expressed genes. Frame-specific enrichment of UAA codons immediately following the genuine UAA stop codon, not observed in Obscuromonas, points to a specific mode of termination. All Blastocrithidia species possess specific mutations in eukaryotic release factor 1 and a unique acidic region following the prion-like N-terminus of eukaryotic release factor 3 that may be associated with stop codon readthrough. We infer that the common ancestor of the genus Blastocrithidia already exhibited a GC-poor genome with the non-canonical genetic code. Our comparative analysis highlights features associated with this extensive stop codon reassignment. This cascade of mutually dependent adaptations, driven by increasing AU-richness in transcripts and frequent emergence of in-frame stops, underscores the dynamic interplay between genome composition and genetic code plasticity to maintain vital functionality. IMPORTANCE: The genetic code, assigning amino acids to codons, is almost universal, yet an increasing number of its alterations keep emerging, mostly in organelles and unicellular eukaryotes. One such case is the trypanosomatid genus Blastocrithidia, where all three stop codons were reassigned to amino acids, with UAA also serving as a sole termination signal. We conducted a comparative analysis of four Blastocrithidia species, all with the same non-canonical genetic code, and their close relatives of the genus Obscuromonas, which retain the canonical code. This across-genome comparison allowed the identification of key traits associated with genetic code reassignment in Blastocrithidia. This work provides insight into the evolutionary steps, facilitating an extensive departure from the canonical genetic code that occurred independently in several eukaryotic lineages.
- Klíčová slova
- AT-rich genomes, eukaryotic release factors, nuclear genetic code, reassigned codon, tRNA structure, termination of translation,
- MeSH
- buněčné jádro * genetika MeSH
- fylogeneze MeSH
- genetický kód * MeSH
- genom protozoální * MeSH
- genomika MeSH
- molekulární evoluce MeSH
- RNA transferová genetika MeSH
- terminační kodon genetika MeSH
- Trypanosomatina * genetika klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- RNA transferová MeSH
- terminační kodon MeSH
Diplonemids are a hyperdiverse group of flagellated protists, but with less than two dozen formally described representatives. Here, we describe four new species of cultured diplonemids, identified on the basis of their 18S rRNA sequences, light-, fluorescence-, scanning- and transmission electron microscopy. Three new species belong to the genus Rhynchopus (R. asiaticus sp.n., R. granulatus sp.n., and R. valaseki sp.n.), while the fourth species is an unusual representative of the genus Lacrimia (L. aflagellata sp.n.). The latter organism is the first diplonemid outside the genus Rhynchopus (as defined previously) to show a gliding trophic stage with flagellar stubs concealed inside the flagellar pocket and a highly motile dispersive swimming stage. Since this character is thus no longer a genus-specific apomorphy, we provide a taxonomic revision of the genus Rhynchopus with separation of the new genus Natarhynchopus gen. n. We also identify bacterial endosymbionts of L. aflagellata and R. asiaticus as Ca. Syngnamydia medusae (Chlamydiales, Simkaniaceae) and Ca. Cytomitobacter rhynchopi sp. n. (Alphaproteobacteria, Holosporaceae), respectively, and discuss their potential functions. This is the first report of a chlamydial symbiont within a diplonemid host. We also propose that diplonemids may serve as vectors for chlamydial pathogens of marine fish.
- Klíčová slova
- Chlamydiae, Endosymbiont, Flagellate, Heterotrophic protist, Intracellular bacteria, Lacrimia, Rhynchopus, Ultrastructure,
- MeSH
- Euglenozoa * klasifikace genetika ultrastruktura fyziologie cytologie mikrobiologie MeSH
- fylogeneze MeSH
- protozoální DNA genetika chemie MeSH
- RNA ribozomální 18S genetika MeSH
- symbióza * MeSH
- transmisní elektronová mikroskopie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH
- RNA ribozomální 18S MeSH
Blastocrithidia nonstop is a protist with a highly unusual nuclear genetic code, in which all three standard stop codons are reassigned to encode amino acids, with UAA also serving as a sole termination codon. In this study, we demonstrate that this parasitic flagellate is amenable to genetic manipulation, enabling gene ablation and protein tagging. Using preassembled Cas9 ribonucleoprotein complexes, we successfully disrupted and tagged the non-essential gene encoding catalase. These advances establish this single-celled eukaryote as a model organism for investigating the malleability and evolution of the genetic code in eukaryotes.
- Klíčová slova
- CRISPR‐Cas9, codon reassignment, genetic code, model organism, trypanosomatids,
- MeSH
- genetický kód * genetika MeSH
- katalasa genetika MeSH
- protozoální proteiny genetika MeSH
- terminační kodon genetika MeSH
- Trypanosomatina * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- katalasa MeSH
- protozoální proteiny MeSH
- terminační kodon MeSH
Leishmaniasis is a complex disease caused by protozoan parasites of the genus Leishmania, which are transmitted by phlebotomine sand flies. The clinical manifestations of leishmaniasis are diverse, ranging from self-healing cutaneous lesions to fatal systemic disease. Mouse models are instrumental in advancing our understanding of the immune system against infections, yet their limitations in translating findings to humans are increasingly highlighted. The success rate of translating data from mice to humans remains low, largely due to the complexity of diseases and the numerous factors that influence the disease outcomes. Therefore, for the effective translation of data from murine models of leishmaniasis, it is essential to align experimental conditions with those relevant to human infection. Factors such as parasite characteristics, vector-derived components, host status, and environmental conditions must be carefully considered and adapted to enhance the translational relevance of mouse data. These parameters are potentially modifiable and should be carefully integrated into the design and interpretation of experimental procedures in Leishmania studies. In the current paper, we review the challenges and perspective of using mouse as a model for leishmaniasis. We have particularly emphasized the non-genetic factors that influence experiments and focused on strategies to improve translational value of studies on leishmaniasis using mouse models.
- Klíčová slova
- experimental analysis, experimental conditions, human leishmaniasis, influencing factor, mouse model, reproducibility of data, translation,
- MeSH
- Leishmania * imunologie MeSH
- leishmanióza * parazitologie imunologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- translační biomedicínský výzkum * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The trypanosomatid flagellates possess in their single mitochondrion a highly complex kinetoplast (k)DNA, which is composed of interlocked circular molecules of two types. Dozens of maxicircles represent a classical mitochondrial genome, and thousands of minicircles encode guide (g)RNAs, which direct the processive and essential uridine insertion/deletion messenger RNA (mRNA) editing of maxicircle transcripts. While the details of kDNA structure and this type of RNA editing are well established, our knowledge mostly relies on a narrow foray of intensely studied human parasites of the genera Leishmania and Trypanosoma. Here, we analyzed kDNA, its expression, and RNA editing of two members of the poorly characterized genus Vickermania with very different cultivation histories. In both Vickermania species, the gRNA-containing heterogeneous large (HL)-circles are atypically large with multiple gRNAs each. Examination of Vickermania spadyakhi HL-circle loci revealed a massive redundancy of gRNAs relative to the editing needs. In comparison, the HL-circle repertoire of extensively cultivated Vickermania ingenoplastis is greatly reduced. It correlates with V. ingenoplastis-specific loss of productive editing of transcripts encoding subunits of respiratory chain complex I and corresponding lack of complex I activity. This loss in a parasite already lacking genes for subunits of complexes III and IV suggests an apparent requirement for its mitochondrial adenosine triphosphate (ATP) synthase to work in reverse to maintain membrane potential. In contrast, V. spadyakhi retains a functional complex I that allows ATP synthase to work in its standard direction.
- Klíčová slova
- ATP synthase, RNA editing, Vickermania, kinetoplast DNA, trypanosomatids,
- MeSH
- editace RNA * genetika MeSH
- genom mitochondriální MeSH
- genom protozoální * MeSH
- kinetoplastová DNA * genetika MeSH
- molekulární evoluce * MeSH
- Trypanosomatina * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kinetoplastová DNA * MeSH
Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., "patchy") distributions across other eukaryotes. A most intriguing subset are components ("jötnarlogs") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.
- Klíčová slova
- Euglenozoa, Jotnarlog, endosome, evolutionary cell biology, heterotroph, last eukaryotic common ancestor, membrane trafficking, phylogenetics,
- MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- Kinetoplastida * fyziologie genetika MeSH
- Publikační typ
- časopisecké články MeSH
This article explores the use of expansion microscopy, a technique that enhances resolution in fluorescence microscopy, on the autotrophic protist Euglena gracilis A modified protocol was developed to preserve the cell structures during fixation. Using antibodies against key cytoskeletal and organelle markers, α-tubulin, β-ATPase, and Rubisco activase, the microtubular structures, mitochondria, and chloroplasts were visualised. The organisation of the cytoskeleton corresponded to the findings from electron microscopy while allowing for the visualisation of the flagellar pocket in its entirety and revealing previously unnoticed details. This study offered insights into the shape and development of mitochondria and chloroplasts under varying conditions, such as culture ages and light cycles. This work demonstrated that expansion microscopy is a robust tool for visualising cellular structures in E. gracilis, an organism whose internal structures cannot be stained using standard immunofluorescence because of its complex pellicle. This technique also serves as a complement to electron microscopy, facilitating tomographic reconstructions in a routine fashion.
- MeSH
- chloroplasty ultrastruktura MeSH
- cytoskelet * ultrastruktura MeSH
- Euglena gracilis * ultrastruktura MeSH
- flagella ultrastruktura MeSH
- fluorescenční mikroskopie * metody MeSH
- mitochondrie ultrastruktura MeSH
- mitóza MeSH
- protilátky chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protilátky MeSH
African trypanosomes are medically important parasites that cause sleeping sickness in humans and nagana in animals. In addition to their pathogenic role, they have emerged as valuable model organisms for studying fundamental biological processes. Protein tagging is a powerful tool for investigating protein localization and function. In a previous study, we developed two plasmids for rapid and reproducible polymerase chain reaction-based protein tagging in trypanosomes, which enabled the subcellular mapping of 89% of the trypanosome proteome. However, the limited selection of fluorescent protein tags and selectable markers restricted the flexibility of this approach. Here, we present an extended set of >100 plasmids that incorporate universal primer annealing sequences, enabling protein tagging with a range of fluorescent, biochemical and epitope tags, using five different selection markers. We evaluated the suitability of various fluorescent proteins for live and fixed cell imaging, fluorescent movies, and we demonstrate the use of tagging plasmids encoding tandem epitope tags to support expansion microscopy approaches. We show that this series of plasmids is functional in other trypanosomatid parasites, significantly increasing its value. Finally, we developed a new plasmid for tagging glycosylphosphatidylinositol-anchored proteins. We anticipate that this will be an important toolset for investigating trypanosomatid protein localization and function.
- Klíčová slova
- expansion microscopy, protein tagging, toolkit, trypanosomatid, trypanosome,
- MeSH
- lidé MeSH
- plazmidy genetika MeSH
- protozoální proteiny * metabolismus genetika MeSH
- transport proteinů MeSH
- Trypanosoma brucei brucei metabolismus genetika MeSH
- Trypanosomatina * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny * MeSH
Chagas disease, caused by the kinetoplastid Trypanosoma cruzi (Chagas, 1909), and transmitted by triatomine bugs, poses a significant public health challenge. Variability in the susceptibility of different triatomine species to T. cruzi infection can profoundly influence disease transmission dynamics and control measures. In this study, we assessed the susceptibility to T. cruzi infection in the first and third nymphal stages across eight triatomine species to T. cruzi infection using experimental inoculation with the NINOA strain and optical microscopy. The evaluated species were Dipetalogaster maximus (Uhler), Triatoma bassolsae (Alejandre-Aguilar, Nogueda-Torres, Cortéz-Jiménez, Jurberg, Galvão, Carcaballo), T. infestans (Klug), T. lecticularia (Stål), T. mexicana (Herrich-Schaeffer), T. pallidipennis (Stål), T. phyllosoma (Burmeister) and T. picturata (Usinger). The results indicated that T. bassolsae exhibited the highest susceptibility to infection, followed by T. pallidipennis and D. maximus. Our analysis also revealed that T. cruzi (NINOA) infection was significantly associated with triatomine species rather than nymphal stage (p < 0.0001), with substantial variability observed in susceptibility among species (p < 0.001). We ranked triatomine species susceptibility to T. cruzi infection as follows: T. bassolsae > D. maximus = T. pallidipennis = T. picturata = T. mexicana > T. phyllosoma = T. lecticularia = T. infestans. These findings enhance our understanding of T. cruzi transmission dynamics and offer valuable insights for the development of effective control strategies against this neglected tropical disease.
- Klíčová slova
- Chagas disease, nymphal stages, triatomine infections, vector competence,
- MeSH
- Chagasova nemoc přenos parazitologie MeSH
- druhová specificita MeSH
- hmyz - vektory * parazitologie MeSH
- nymfa parazitologie růst a vývoj MeSH
- Triatoma * parazitologie MeSH
- Triatominae * parazitologie MeSH
- Trypanosoma cruzi * fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Mexiko MeSH
Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue. However, not all near-cognate tRNAs promote efficient SC-RT. Here, with the help of Saccharomyces cerevisiae and Trypanosoma brucei, we demonstrate that those tRNAs that promote efficient SC-RT establish critical contacts between their anticodon stem (AS) and ribosomal proteins Rps30/eS30 and Rps25/eS25 forming the decoding site. Unexpectedly, the length and well-defined nature of the AS determine the strength of these contacts, which is reflected in organisms with reassigned stop codons. These findings open an unexplored direction in tRNA biology that should facilitate the design of artificial tRNAs with specifically altered decoding abilities.
- MeSH
- antikodon metabolismus MeSH
- konformace nukleové kyseliny MeSH
- proteosyntéza * MeSH
- ribozomální proteiny metabolismus MeSH
- ribozomy * metabolismus MeSH
- RNA transferová * metabolismus genetika chemie MeSH
- Saccharomyces cerevisiae genetika metabolismus MeSH
- terminační kodon * genetika metabolismus MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antikodon MeSH
- ribozomální proteiny MeSH
- RNA transferová * MeSH
- terminační kodon * MeSH