The trypanosomatid flagellates possess in their single mitochondrion a highly complex kinetoplast (k)DNA, which is composed of interlocked circular molecules of two types. Dozens of maxicircles represent a classical mitochondrial genome, and thousands of minicircles encode guide (g)RNAs, which direct the processive and essential uridine insertion/deletion messenger RNA (mRNA) editing of maxicircle transcripts. While the details of kDNA structure and this type of RNA editing are well established, our knowledge mostly relies on a narrow foray of intensely studied human parasites of the genera Leishmania and Trypanosoma. Here, we analyzed kDNA, its expression, and RNA editing of two members of the poorly characterized genus Vickermania with very different cultivation histories. In both Vickermania species, the gRNA-containing heterogeneous large (HL)-circles are atypically large with multiple gRNAs each. Examination of Vickermania spadyakhi HL-circle loci revealed a massive redundancy of gRNAs relative to the editing needs. In comparison, the HL-circle repertoire of extensively cultivated Vickermania ingenoplastis is greatly reduced. It correlates with V. ingenoplastis-specific loss of productive editing of transcripts encoding subunits of respiratory chain complex I and corresponding lack of complex I activity. This loss in a parasite already lacking genes for subunits of complexes III and IV suggests an apparent requirement for its mitochondrial adenosine triphosphate (ATP) synthase to work in reverse to maintain membrane potential. In contrast, V. spadyakhi retains a functional complex I that allows ATP synthase to work in its standard direction.
- Keywords
- ATP synthase, RNA editing, Vickermania, kinetoplast DNA, trypanosomatids,
- MeSH
- RNA Editing * genetics MeSH
- Genome, Mitochondrial MeSH
- Genome, Protozoan * MeSH
- DNA, Kinetoplast * genetics MeSH
- Evolution, Molecular * MeSH
- Trypanosomatina * genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Kinetoplast * MeSH
Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., "patchy") distributions across other eukaryotes. A most intriguing subset are components ("jötnarlogs") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.
- Keywords
- Euglenozoa, Jotnarlog, endosome, evolutionary cell biology, heterotroph, last eukaryotic common ancestor, membrane trafficking, phylogenetics,
- MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Kinetoplastida * physiology genetics MeSH
- Publication type
- Journal Article MeSH
Chagas disease, caused by the kinetoplastid Trypanosoma cruzi (Chagas, 1909), and transmitted by triatomine bugs, poses a significant public health challenge. Variability in the susceptibility of different triatomine species to T. cruzi infection can profoundly influence disease transmission dynamics and control measures. In this study, we assessed the susceptibility to T. cruzi infection in the first and third nymphal stages across eight triatomine species to T. cruzi infection using experimental inoculation with the NINOA strain and optical microscopy. The evaluated species were Dipetalogaster maximus (Uhler), Triatoma bassolsae (Alejandre-Aguilar, Nogueda-Torres, Cortéz-Jiménez, Jurberg, Galvão, Carcaballo), T. infestans (Klug), T. lecticularia (Stål), T. mexicana (Herrich-Schaeffer), T. pallidipennis (Stål), T. phyllosoma (Burmeister) and T. picturata (Usinger). The results indicated that T. bassolsae exhibited the highest susceptibility to infection, followed by T. pallidipennis and D. maximus. Our analysis also revealed that T. cruzi (NINOA) infection was significantly associated with triatomine species rather than nymphal stage (p < 0.0001), with substantial variability observed in susceptibility among species (p < 0.001). We ranked triatomine species susceptibility to T. cruzi infection as follows: T. bassolsae > D. maximus = T. pallidipennis = T. picturata = T. mexicana > T. phyllosoma = T. lecticularia = T. infestans. These findings enhance our understanding of T. cruzi transmission dynamics and offer valuable insights for the development of effective control strategies against this neglected tropical disease.
- Keywords
- Chagas disease, nymphal stages, triatomine infections, vector competence,
- MeSH
- Chagas Disease transmission parasitology MeSH
- Species Specificity MeSH
- Insect Vectors * parasitology MeSH
- Nymph parasitology growth & development MeSH
- Triatoma * parasitology MeSH
- Triatominae * parasitology MeSH
- Trypanosoma cruzi * physiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Mexico MeSH
African trypanosomes are medically important parasites that cause sleeping sickness in humans and nagana in animals. In addition to their pathogenic role, they have emerged as valuable model organisms for studying fundamental biological processes. Protein tagging is a powerful tool for investigating protein localization and function. In a previous study, we developed two plasmids for rapid and reproducible polymerase chain reaction-based protein tagging in trypanosomes, which enabled the subcellular mapping of 89% of the trypanosome proteome. However, the limited selection of fluorescent protein tags and selectable markers restricted the flexibility of this approach. Here, we present an extended set of >100 plasmids that incorporate universal primer annealing sequences, enabling protein tagging with a range of fluorescent, biochemical and epitope tags, using five different selection markers. We evaluated the suitability of various fluorescent proteins for live and fixed cell imaging, fluorescent movies, and we demonstrate the use of tagging plasmids encoding tandem epitope tags to support expansion microscopy approaches. We show that this series of plasmids is functional in other trypanosomatid parasites, significantly increasing its value. Finally, we developed a new plasmid for tagging glycosylphosphatidylinositol-anchored proteins. We anticipate that this will be an important toolset for investigating trypanosomatid protein localization and function.
- Keywords
- expansion microscopy, protein tagging, toolkit, trypanosomatid, trypanosome,
- MeSH
- Epitopes metabolism MeSH
- Humans MeSH
- Plasmids * metabolism genetics MeSH
- Protozoan Proteins * metabolism genetics MeSH
- Protein Transport MeSH
- Trypanosoma brucei brucei metabolism genetics MeSH
- Trypanosoma genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Epitopes MeSH
- Protozoan Proteins * MeSH
This article explores the use of expansion microscopy, a technique that enhances resolution in fluorescence microscopy, on the autotrophic protist Euglena gracilis A modified protocol was developed to preserve the cell structures during fixation. Using antibodies against key cytoskeletal and organelle markers, α-tubulin, β-ATPase, and Rubisco activase, the microtubular structures, mitochondria, and chloroplasts were visualised. The organisation of the cytoskeleton corresponded to the findings from electron microscopy while allowing for the visualisation of the flagellar pocket in its entirety and revealing previously unnoticed details. This study offered insights into the shape and development of mitochondria and chloroplasts under varying conditions, such as culture ages and light cycles. This work demonstrated that expansion microscopy is a robust tool for visualising cellular structures in E. gracilis, an organism whose internal structures cannot be stained using standard immunofluorescence because of its complex pellicle. This technique also serves as a complement to electron microscopy, facilitating tomographic reconstructions in a routine fashion.
- MeSH
- Chloroplasts ultrastructure MeSH
- Cytoskeleton * ultrastructure MeSH
- Euglena gracilis * ultrastructure MeSH
- Flagella ultrastructure MeSH
- Microscopy, Fluorescence * methods MeSH
- Mitochondria ultrastructure MeSH
- Mitosis MeSH
- Antibodies chemistry MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antibodies MeSH
Transfer RNAs (tRNAs) serve as a dictionary for the ribosome translating the genetic message from mRNA into a polypeptide chain. In addition to this canonical role, tRNAs are involved in other processes such as programmed stop codon readthrough (SC-RT). There, tRNAs with near-cognate anticodons to stop codons must outcompete release factors and incorporate into the ribosomal decoding center to prevent termination and allow translation to continue. However, not all near-cognate tRNAs promote efficient SC-RT. Here, with the help of Saccharomyces cerevisiae and Trypanosoma brucei, we demonstrate that those tRNAs that promote efficient SC-RT establish critical contacts between their anticodon stem (AS) and ribosomal proteins Rps30/eS30 and Rps25/eS25 forming the decoding site. Unexpectedly, the length and well-defined nature of the AS determine the strength of these contacts, which is reflected in organisms with reassigned stop codons. These findings open an unexplored direction in tRNA biology that should facilitate the design of artificial tRNAs with specifically altered decoding abilities.
- MeSH
- Anticodon metabolism MeSH
- Nucleic Acid Conformation MeSH
- Protein Biosynthesis * MeSH
- Ribosomal Proteins metabolism MeSH
- Ribosomes * metabolism MeSH
- RNA, Transfer * metabolism genetics chemistry MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Codon, Terminator * genetics metabolism MeSH
- Trypanosoma brucei brucei genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anticodon MeSH
- Ribosomal Proteins MeSH
- RNA, Transfer * MeSH
- Codon, Terminator * MeSH
Over the last decade, considerable progress has been made in unraveling RNA virus diversity. This has contributed to our understanding of the evolution of these viruses, which include emerging zoonotic human pathogens. Current success has been greatly facilitated by the development of next-generation sequencing platforms instrumental for meta-transcriptomic studies. However, due to the rapid evolution of RNA viruses, there are numerous "blind spots" waiting to be explored; one of those is the RNA virome of unicellular eukaryotes. Here, we present the pipeline, which has been successfully used to characterize various types of RNA viruses, including Leishbuviridae (Bunyaviricetes, Hareavirales) in the parasitic flagellates of the family Trypanosomatidae. The pipeline relies on axenic in vitro cell culture and double-stranded RNA enrichment, followed by direct RNA-sequencing. A detailed procedure description starting from the initial total RNA preparation to the final assembly of the viral segments is provided.
- Keywords
- Leishbuviridae, NGS, Protists, RNA isolation, Trypanosomatidae, Virus Discovery, dsRNA,
- MeSH
- RNA, Double-Stranded genetics MeSH
- Genome, Viral MeSH
- RNA, Viral genetics MeSH
- RNA Viruses genetics classification MeSH
- Sequence Analysis, RNA methods MeSH
- Trypanosomatina * genetics MeSH
- High-Throughput Nucleotide Sequencing * methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Double-Stranded MeSH
- RNA, Viral MeSH
The exon junction complex (EJC) is a key player in metazoan mRNA quality control and is placed upstream of the exon-exon junction after splicing. Its inner core is composed of Magoh, Y14, eIF4AIII and BTZ and the outer core of proteins involved in mRNA splicing (CWC22), export (Yra1), translation (PYM) and nonsense mediated decay (NMD, UPF1/2/3). Trypanosoma brucei encodes only two genes with introns, but all mRNAs are processed by trans-splicing. The presence of three core EJC proteins and a potential BTZ homologue (Rbp25) in trypanosomes has been suggested to adapt of the EJC function to mark trans-spliced mRNAs. We analysed trypanosome EJC components and noticed major differences between eIF4AIII and Magoh/Y14: (i) whilst eIF4AIII is essential, knocking out both Magoh and Y14 elicits only a mild growth phenotype (ii) eIF4AIII localization is mostly nucleolar, while Magoh and Y14 are nucleolar and nucleoplasmic but excluded from the cytoplasm (iii) eIF4AIII associates with nucleolar proteins and the splicing factor CWC22, but not with Y14 or Magoh, while Magoh and Y14 associate with each other, but not with eIF4AIII, CWC22 or nucleolar proteins. Our data argue against the presence of a functional EJC in trypanosomes, but indicate that eIF4AIII adopted non-EJC related, essential functions, while Magoh and Y14 became redundant. Trypanosomes also possess homologues to the NMD proteins UPF1 and UPF2. Depletion of UPF1 causes only a minor reduction in growth and phylogenetic analyses show several independent losses of UPF1 and UPF2, as well as complete loss of UPF3 in the Kinetoplastida group, indicating that UPF1-dependent NMD is not essential. Regardless, we demonstrate that UPF1 depletion restores the mRNA levels of a PTC reporter. Altogether, we show that the almost intron-less trypanosomes are in the process of losing the canonical EJC/NMD pathways: Y14 and Magoh have become redundant and the still-functional UPF1-dependent NMD pathway is not essential.
- MeSH
- Eukaryotic Initiation Factor-4A metabolism genetics MeSH
- Exons genetics MeSH
- RNA, Messenger genetics metabolism MeSH
- Nonsense Mediated mRNA Decay * MeSH
- Protozoan Proteins * metabolism genetics MeSH
- RNA Splicing MeSH
- Trypanosoma brucei brucei * metabolism genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Eukaryotic Initiation Factor-4A MeSH
- RNA, Messenger MeSH
- Protozoan Proteins * MeSH
BACKGROUND: The present study investigates implications of a sub-chromosomal deletion in Leishmania infantum strains, the causative agent of American Visceral Leishmaniasis (AVL). Primarily found in New World strains, the deletion leads to the absence of the ecto-3'-nucleotidase/nuclease enzyme, impacting parasite virulence, pathogenicity, and drug susceptibility. The factors favoring prevalence and the widespread geographic distribution of these deleted mutant parasites (DEL) in the NW (NW) are discussed under the generated data. METHODS: We conducted phenotypic assessments of the sub-chromosomal deletion through in vitro assays with axenic parasites and experimental infections in both in vitro and in vivo models of vertebrate and invertebrate hosts using geographically diverse mutant field isolates. RESULTS: Despite reduced pathogenicity, the DEL strains efficiently infect vertebrate hosts and exhibit relevant differences, including enhanced metacyclogenesis and colonization rates in sand flies, potentially facilitating transmission. This combination may represent a more effective way to maintain and disperse the transmission cycle of DEL strains. CONCLUSIONS: Phenotypic assessments reveal altered parasite fitness, with potential enhanced transmissibility at the population level. Reduced susceptibility of DEL strains to miltefosine, a key drug in VL treatment, further complicates control efforts. The study underscores the importance of typing parasite genomes for surveillance and control, advocating for the sub-chromosomal deletion as a molecular marker in AVL management.
- MeSH
- Gene Deletion * MeSH
- Leishmania infantum * genetics pathogenicity MeSH
- Leishmaniasis, Visceral * parasitology transmission epidemiology MeSH
- Humans MeSH
- Mice MeSH
- Psychodidae parasitology MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Nuclear export of mRNAs requires loading the mRNP to the transporter Mex67/Mtr2 in the nucleoplasm, controlled access to the pore by the basket-localised TREX-2 complex and mRNA release at the cytoplasmic site by the DEAD-box RNA helicase Dbp5. Asymmetric localisation of nucleoporins (NUPs) and transport components as well as the ATP dependency of Dbp5 ensure unidirectionality of transport. Trypanosomes possess homologues of the mRNA transporter Mex67/Mtr2, but not of TREX-2 or Dbp5. Instead, nuclear export is likely fuelled by the GTP/GDP gradient created by the Ran GTPase. However, it remains unclear, how directionality is achieved since the current model of the trypanosomatid pore is mostly symmetric. We have revisited the architecture of the trypanosome nuclear pore complex using a novel combination of expansion microscopy, proximity labelling and streptavidin imaging. We could confidently assign the NUP76 complex, a known Mex67 interaction platform, to the cytoplasmic site of the pore and the NUP64/NUP98/NUP75 complex to the nuclear site. Having defined markers for both sites of the pore, we set out to map all 75 trypanosome proteins with known nuclear pore localisation to a subregion of the pore using mass spectrometry data from proximity labelling. This approach defined several further proteins with a specific localisation to the nuclear site of the pore, including proteins with predicted structural homology to TREX-2 components. We mapped the components of the Ran-based mRNA export system to the nuclear site (RanBPL), the cytoplasmic site (RanGAP, RanBP1) or both (Ran, MEX67). Lastly, we demonstrate, by deploying an auxin degron system, that NUP76 holds an essential role in mRNA export consistent with a possible functional orthology to NUP82/88. Altogether, the combination of proximity labelling with expansion microscopy revealed an asymmetric architecture of the trypanosome nuclear pore supporting inherent roles for directed transport. Our approach delivered novel nuclear pore associated components inclusive positional information, which can now be interrogated for functional roles to explore trypanosome-specific adaptions of the nuclear basket, export control, and mRNP remodelling.
- MeSH
- Active Transport, Cell Nucleus * MeSH
- Nuclear Pore * metabolism MeSH
- Nuclear Pore Complex Proteins * metabolism genetics MeSH
- RNA, Messenger * metabolism genetics MeSH
- Nucleocytoplasmic Transport Proteins metabolism genetics MeSH
- Protozoan Proteins * metabolism genetics MeSH
- RNA Transport MeSH
- Trypanosoma brucei brucei * metabolism genetics MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nuclear Pore Complex Proteins * MeSH
- RNA, Messenger * MeSH
- Nucleocytoplasmic Transport Proteins MeSH
- Protozoan Proteins * MeSH