Most cited article - PubMed ID 27759919
A synthesis of radial growth patterns preceding tree mortality
The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.
- MeSH
- Fagus * MeSH
- Climate Change MeSH
- Forests MeSH
- Air Movements MeSH
- Carbon MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Carbon MeSH
The growth of past, present, and future forests was, is and will be affected by climate variability. This multifaceted relationship has been assessed in several regional studies, but spatially resolved, large-scale analyses are largely missing so far. Here we estimate recent changes in growth of 5800 beech trees (Fagus sylvatica L.) from 324 sites, representing the full geographic and climatic range of species. Future growth trends were predicted considering state-of-the-art climate scenarios. The validated models indicate growth declines across large region of the distribution in recent decades, and project severe future growth declines ranging from -20% to more than -50% by 2090, depending on the region and climate change scenario (i.e. CMIP6 SSP1-2.6 and SSP5-8.5). Forecasted forest productivity losses are most striking towards the southern distribution limit of Fagus sylvatica, in regions where persisting atmospheric high-pressure systems are expected to increase drought severity. The projected 21st century growth changes across Europe indicate serious ecological and economic consequences that require immediate forest adaptation.
- MeSH
- Fagus * MeSH
- Climate Change MeSH
- Forests MeSH
- Droughts MeSH
- Trees MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
- MeSH
- Pinus sylvestris MeSH
- Dehydration * MeSH
- Ecology * MeSH
- Ecosystem MeSH
- Infrared Rays * MeSH
- Climate Change * MeSH
- Forests * MeSH
- Droughts MeSH
- Climate MeSH
- Soil MeSH
- Picea MeSH
- Trees MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Norway MeSH
- Names of Substances
- Soil MeSH
- Water MeSH
Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.
The genus Quercus comprises important species in forestry not only for their productive value but also for their ability to withstand drought. Hence an evaluation of inter- and intraspecific variation in drought tolerance is important for selecting the best adapted species and provenances for future afforestation. The presence of long vessels makes it difficult to assess xylem vulnerability to embolism in oak. Thanks to the development of an in situ flow centrifuge equipped with a large rotor, we quantified (i) the between species variability of embolism resistance in four native and two exotic species of oaks in Europe and (ii) the within species variability in Quercus petraea. Embolism resistance varied significantly among species, with the pressure inducing 50% loss of hydraulic conductivity (P50 ) ranging between - 7.0 and -4.2 MPa. Species native to the Mediterranean region were more resistant than pan-European species. In contrast, intraspecific variability in embolism resistance in Q. petraea was low within provenances and null among provenances. A positive correlation between P50 and vessel diameter among the six oak species indicates that the more embolism resistant species had narrower xylem vessels. However, this tradeoff between hydraulic efficiency and safety was not observed between Q. petraea provenances.
- Keywords
- climate change, drought resistance, oaks, plant hydraulics, xylem embolism,
- Publication type
- Journal Article MeSH
Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter-annual growth variability and a decrease in growth synchrony in the last ∼20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.
- Keywords
- biotic agents, drought, forest, growth, resilience indicators, ring-width, tree mortality, variance,
- Publication type
- Journal Article MeSH