Most cited article - PubMed ID 27782363
DNA Damage Potential of Engine Emissions Measured In Vitro by Micronucleus Test in Human Bronchial Epithelial Cells
The evaluation of the frequency of micronuclei (MN) is a broadly utilised approach in in vitro toxicity testing. Nevertheless, the specific properties of nanomaterials (NMs) give rise to concerns regarding the optimal methodological variants of the MN assay. In bronchial epithelial cells (BEAS-2B), we tested the genotoxicity of five types of NMs (TiO2: NM101, NM103; SiO2: NM200; Ag: NM300K, NM302) using four variants of MN protocols, differing in the time of exposure and the application of cytochalasin-B combined with the simultaneous and delayed co-treatment with NMs. Using transmission electron microscopy, we evaluated the impact of cytochalasin-B on the transport of NMs into the cells. To assess the behaviour of NMs in a culture media for individual testing conditions, we used dynamic light scattering measurement. The presence of NMs in the cells, their intracellular aggregation and dispersion properties were comparable when tests with or without cytochalasin-B were performed. The genotoxic potential of various TiO2 and Ag particles differed (NM101 < NM103 and NM302 < NM300K, respectively). The application of cytochalasin-B tended to increase the percentage of aberrant cells. In conclusion, the comparison of the testing strategies revealed that the level of DNA damage induced by NMs is affected by the selected methodological approach. This fact should be considered in the interpretation of the results of genotoxicity tests.
- Keywords
- DLS, cell line, genotoxicity, micronucleus assay, nanomaterials,
- Publication type
- Journal Article MeSH
Growing worldwide efforts to replace (reduce) animal testing and to improve alternative in vitro tests which may be more efficient in terms of both time, cost and scientific validity include also genotoxicity/mutagenicity endpoints. The aim of the review article was to summarize currently available in vitro testing approaches in this field, their regulatory acceptance and recommended combinations for classification of chemicals. A study using the combination of Comet Assay performed on two cell lines and the Chromosomal Aberration test on human peripheral lymphocytes was performed with the aim to predict the genotoxic potential of selected paraben esters, serving as a model chemical group. Parabens are widely used in consumer products as preservatives and have been reported to exhibit inconclusive results in numerous genotoxicity studies. The Comet Assay identified Ethylparaben and Benzylparaben as potentially genotoxic. The Chromosomal Aberration test revealed weak genotoxic potential in case of Ethylparaben and positive genotoxicity in case of Butylparaben, Propylparaben and Isopropylparaben. The main reasons for variability seem to be limited water solubility of parabens, determining their bioavailability at the cellular level, and absence of metabolic activation in the Comet Assay. The results confirmed that the Comet Assay should serve as a screening test and should not be used as a stand-alone method for classification of genotoxicity. The weight of evidence approach in risk assessment should be supported with data generated with the use of human relevant in vitro methods based on cells / tissues of human origin.
- MeSH
- Animal Testing Alternatives * MeSH
- HaCaT Cells MeSH
- Chromosome Aberrations chemically induced MeSH
- Risk Assessment MeSH
- Comet Assay MeSH
- Humans MeSH
- Lymphocytes drug effects pathology MeSH
- Micronucleus Tests MeSH
- Micronuclei, Chromosome-Defective chemically induced MeSH
- Mutagenesis drug effects MeSH
- Parabens toxicity MeSH
- DNA Damage * MeSH
- Mutagenicity Tests * MeSH
- Cell Survival drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Comparative Study MeSH
- Names of Substances
- Parabens MeSH
Inhalation exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with various adverse health effects, including chronic lung diseases and cancer. Using human bronchial epithelial cell line HBE1, we investigated the effects of structurally different PAHs on tissue homeostatic processes, namely gap junctional intercellular communication (GJIC) and MAPKs activity. Rapid (<1 h) and sustained (up to 24 h) inhibition of GJIC was induced by low/middle molecular weight (MW) PAHs, particularly by those with a bay- or bay-like region (1- and 9-methylanthracene, fluoranthene), but also by fluorene and pyrene. In contrast, linear low MW (anthracene, 2-methylanthracene) or higher MW (chrysene) PAHs did not affect GJIC. Fluoranthene, 1- and 9-methylanthracene induced strong and sustained activation of MAPK ERK1/2, whereas MAPK p38 was activated rather nonspecifically by all tested PAHs. Low/middle MW PAHs can disrupt tissue homeostasis in human airway epithelium via structure-dependent nongenotoxic mechanisms, which can contribute to their human health hazards.
- Keywords
- Gap junctional intercellular communication, Human bronchial epithelial cell line, Methylated anthracenes, Mitogen-activated protein kinases, Nongenotoxic mechanisms, Polycyclic aromatic hydrocarbons,
- MeSH
- Bronchi cytology MeSH
- Cell Line MeSH
- Epithelial Cells drug effects physiology MeSH
- Humans MeSH
- Gap Junctions drug effects MeSH
- Cell Communication drug effects MeSH
- Mitogen-Activated Protein Kinases metabolism MeSH
- Polycyclic Aromatic Hydrocarbons toxicity MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Mitogen-Activated Protein Kinases MeSH
- Polycyclic Aromatic Hydrocarbons MeSH
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
- Keywords
- 3D models, cell monocultures, complete engine emissions, gene expression,
- MeSH
- Biomarkers MeSH
- Models, Biological * MeSH
- Endoplasmic Reticulum Chaperone BiP MeSH
- Electric Impedance MeSH
- Epithelial Cells drug effects metabolism MeSH
- Gene Expression MeSH
- Humans MeSH
- Mucins biosynthesis MeSH
- Respiratory Mucosa drug effects metabolism MeSH
- Vehicle Emissions toxicity MeSH
- Environmental Exposure adverse effects MeSH
- DNA Breaks MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers MeSH
- Endoplasmic Reticulum Chaperone BiP MeSH
- HSPA5 protein, human MeSH Browser
- Mucins MeSH
- Vehicle Emissions MeSH