Nejvíce citovaný článek - PubMed ID 27957758
Enzyme Tunnels and Gates As Relevant Targets in Drug Design
Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .
- Klíčová slova
- Bottleneck, Cavity, Cognate ligand, Enzyme, Machine learning, Pocket, Transport, Tunnel,
- Publikační typ
- časopisecké články MeSH
Protein tunnels are essential in transporting small molecules into the active sites of enzymes. Tunnels' geometrical and physico-chemical properties influence the transport process. The tunnels are attractive hot spots for protein engineering and drug development. However, studying the ligand binding and unbinding using experimental techniques is challenging, while in silico methods come with their limitations, especially in the case of resource-demanding virtual screening pipelines. Caver Web 1.2 is a new version of the web server combining the capabilities for the detection of protein tunnels with the calculation of the ligand trajectories. The new version of the Caver Web server was expanded with the ability to fetch novel ligands from the Integrated Database of Small Molecules and with the fully automated virtual screening pipeline allowing for the fast evaluation of the predefined set of over 4,300 currently approved drugs. The virtual screening pipeline is accompanied by a comprehensive user interface, making it a viable service for the broader spectrum of companies and the academic user community. The web server is freely available for academic use at https://loschmidt.chemi.muni.cz/caverweb.
- Klíčová slova
- CIF, Crystallographic Information File, CSA, Catalytic Site Atlas, Caver, CaverDock, Channel, FDA, U.S. Food and Drug Administration, FDA-approved drug, IDSM, Integrated Database of Small Molecules, PDB, Protein Data Bank, Tunnel, Virtual screening, Web,
- Publikační typ
- časopisecké články MeSH
The new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes pathological pulmonary symptoms. Most efforts to develop vaccines and drugs against this virus target the spike glycoprotein, particularly its S1 subunit, which is recognised by angiotensin-converting enzyme 2. Here we use the in-house developed tool CaverDock to perform virtual screening against spike glycoprotein using a cryogenic electron microscopy structure (PDB-ID: 6VXX) and the representative structures of five most populated clusters from a previously published molecular dynamics simulation. The dataset of ligands was obtained from the ZINC database and consists of drugs approved for clinical use worldwide. Trajectories for the passage of individual drugs through the tunnel of the spike glycoprotein homotrimer, their binding energies within the tunnel, and the duration of their contacts with the trimer's three subunits were computed for the full dataset. Multivariate statistical methods were then used to establish structure-activity relationships and select top candidate for movement inhibition. This new protocol for the rapid screening of globally approved drugs (4359 ligands) in a multi-state protein structure (6 states) showed high robustness in the rate of finished calculations. The protocol is universal and can be applied to any target protein with an experimental tertiary structure containing protein tunnels or channels. The protocol will be implemented in the next version of CaverWeb (https://loschmidt.chemi.muni.cz/caverweb/) to make it accessible to the wider scientific community.
- Klíčová slova
- CaverDock, CaverWeb, Machine learning, Protein dynamics, Tunnel, Virtual screening,
- Publikační typ
- časopisecké články MeSH
Protein tunnels and channels are attractive targets for drug design. Drug molecules that block the access of substrates or release of products can be efficient modulators of biological activity. Here, we demonstrate the applicability of a newly developed software tool CaverDock for screening databases of drugs against pharmacologically relevant targets. First, we evaluated the effect of rigid and flexible side chains on sets of substrates and inhibitors of seven different proteins. In order to assess the accuracy of our software, we compared the results obtained from CaverDock calculation with experimental data previously collected with heat shock protein 90α. Finally, we tested the virtual screening capabilities of CaverDock with a set of oncological and anti-inflammatory FDA-approved drugs with two molecular targets-cytochrome P450 17A1 and leukotriene A4 hydrolase/aminopeptidase. Calculation of rigid trajectories using four processors took on average 53 min per molecule with 90% successfully calculated cases. The screening identified functional tunnels based on the profile of potential energies of binding and unbinding trajectories. We concluded that CaverDock is a sufficiently fast, robust, and accurate tool for screening binding/unbinding processes of pharmacologically important targets with buried functional sites. The standalone version of CaverDock is available freely at https://loschmidt.chemi.muni.cz/caverdock/ and the web version at https://loschmidt.chemi.muni.cz/caverweb/.
- Klíčová slova
- binding, channel, docking, inhibitors, substrates, tunnel, unbinding, virtual screening,
- Publikační typ
- časopisecké články MeSH
Caver Web 1.0 is a web server for comprehensive analysis of protein tunnels and channels, and study of the ligands' transport through these transport pathways. Caver Web is the first interactive tool allowing both the analyses within a single graphical user interface. The server is built on top of the abundantly used tunnel detection tool Caver 3.02 and CaverDock 1.0 enabling the study of the ligand transport. The program is easy-to-use as the only required inputs are a protein structure for a tunnel identification and a list of ligands for the transport analysis. The automated guidance procedures assist the users to set up the calculation in a way to obtain biologically relevant results. The identified tunnels, their properties, energy profiles and trajectories for ligands' passages can be calculated and visualized. The tool is very fast (2-20 min per job) and is applicable even for virtual screening purposes. Its simple setup and comprehensive graphical user interface make the tool accessible for a broad scientific community. The server is freely available at https://loschmidt.chemi.muni.cz/caverweb.
- MeSH
- algoritmy * MeSH
- benchmarking MeSH
- interakční proteinové domény a motivy MeSH
- internet MeSH
- kvarterní struktura proteinů MeSH
- lidé MeSH
- ligandy MeSH
- sekvence aminokyselin MeSH
- simulace molekulového dockingu MeSH
- terciární struktura proteinů MeSH
- transportní proteiny chemie metabolismus MeSH
- uživatelské rozhraní počítače * MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- výpočetní biologie metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- transportní proteiny MeSH
MOTIVATION: Studying the transport paths of ligands, solvents, or ions in transmembrane proteins and proteins with buried binding sites is fundamental to the understanding of their biological function. A detailed analysis of the structural features influencing the transport paths is also important for engineering proteins for biomedical and biotechnological applications. RESULTS: CAVER Analyst 2.0 is a software tool for quantitative analysis and real-time visualization of tunnels and channels in static and dynamic structures. This version provides the users with many new functions, including advanced techniques for intuitive visual inspection of the spatiotemporal behavior of tunnels and channels. Novel integrated algorithms allow an efficient analysis and data reduction in large protein structures and molecular dynamic simulations. AVAILABILITY AND IMPLEMENTATION: CAVER Analyst 2.0 is a multi-platform standalone Java-based application. Binaries and documentation are freely available at www.caver.cz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
- MeSH
- algoritmy MeSH
- konformace proteinů MeSH
- proteinové inženýrství MeSH
- proteiny chemie MeSH
- simulace molekulární dynamiky * MeSH
- software MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny MeSH