Nejvíce citovaný článek - PubMed ID 28006667
Alkaline Technosol contaminated by former mining activity and its culturable autochthonous microbiota
We present a biological profile of 16 Aspergillus niger environmental isolates from different types of soils and solid substrates across a pH range, from an ultra-acidic (<3.5) to a very strongly alkaline (>9.0) environment. The soils and solid substrates also differ in varying degrees of anthropic pollution, which in most cases is caused by several centuries of mining activity at old mining sites, sludge beds, ore deposits, stream sediments, and coal dust. The values of toxic elements (As, Sb, Zn, Cu, Pb) very often exceed the limit values. The isolates possess different macro- and micromorphological features. All the identifications of Aspergillus niger isolates were confirmed by molecular PCR analysis and their similarity was expressed by RAMP analysis. The biochemical profile of isolates based on FF-MicroPlate tests from the Biolog system showed identical biochemical reactions in 50 tests, while in 46 tests the utilisation reactions differed. The highest similarity of strains isolated from substrates with the same pH, as well as the most suitable biochemical tests for analysis of the phenotypic similarity of isolated strains, were confirmed when evaluating the biochemical profile using multicriterial analysis in the Canoco program. The isolates were screened for mycotoxin production by thin-layer chromatography (TLC), as well. Two of them were able to synthesise ochratoxin A, while none produced fumonisins under experimental conditions. Presence of toxic compounds in contaminated sites may affect environmental microscopic fungi and cause the genome alteration, which may result in changes of their physiology, including the production of different (secondary) metabolites, such as mycotoxins.
- Klíčová slova
- Aspergillus niger environmental isolates, Biolog FF MicroplateTM, extrolite profile, molecular analyses, multi-criteria data analysis,
- Publikační typ
- časopisecké články MeSH
In this work, the viability of bioaccumulation and bioextraction processes for arsenic removal from contaminated waters, as well as the recycling of arsenate-treated amorphous ferric oxyhydroxide adsorbent (FeOOH) were evaluated using the common soil microscopic filamentous fungus Aspergillus niger. After treating the contaminated arsenate solution (100 mg As L-1) with FeOOH, the remaining solution was exposed to the growing fungus during a static 19-day cultivation period to further decrease the arsenic concentration. Our data indicated that although the FeOOH adsorbent is suitable for arsenate removal with up to 84% removal efficiency, the fungus was capable of accumulating only up to 13.2% of the remaining arsenic from the culture media. This shows that the fungus A. niger, although highly praised for its application in environmental biotechnology research, was insufficient for decreasing the arsenic contamination to an environmentally acceptable level. However, the bioextraction of arsenic from arsenate-treated FeOOH proved relatively effective for reuse of the adsorbent. Due to its production of acidic metabolites, which decreased pH below 2.7, the fungal strain was capable of removing of up to 98.2% of arsenic from the arsenate-treated FeOOH adsorbent.
- Klíčová slova
- arsenic, bioaccumulation, bioextraction, ferric oxyhydroxides, filamentous fungi,
- Publikační typ
- časopisecké články MeSH