Most cited article - PubMed ID 28108391
Diversity of the subspecies Bifidobacterium animalis subsp. lactis
AIM: Clostridium species, such as Clostridium perfringens, C. baratii, C. colicanis, Paraclostridium bifermentans, and Paeniclostridium sordellii, are Gram-positive, anaerobic, endospore-forming bacteria with diverse pathogenic mechanisms. While these species are commensals in the guts of variable animal species, such as anteaters, they are less frequently found in humans. The diet of anteaters, which includes chitin and formic acid, plays an important role in their specific dietary habits, as well as in clostridial metabolism. METHODS AND RESULTS: This study investigates the metabolic diversity and responses of anteater clostridial isolates to various substrates, namely chitin, chitosan, cellulose, N-acetyl-D-glucosamine (NAG), and glucose. All tested clostridia were able to grow in the presence of chitin, cellulose, NAG, and glucose, but varied in metabolite production. However, the presence of chitosan surprisingly showed an antimicrobial effect against clostridia, especially Pae. sordellii, P. bifermentans, and C. colicanis. The results demonstrate significant variations in fermentation profiles, and metabolite production across substrates and clostridial species. Acetate production was detected as common for all tested clostridia despite species variability and incoming substrates, as well as lactate, butyrate, propionate, and formate for some strains. CONCLUSION: In relation to digestion, anteater clostridia could play an important role in chitin and its degradation products, which, in the end, can influence clostridial occurrence and pathogenicity via chitosan.
- Keywords
- N-acetyl-D-glucosamine, antimicrobial activity, cellulose, chitin, chitosan, clostridia, fermentation, metabolites,
- Publication type
- Journal Article MeSH
Preterm germ-free piglets were monoassociated with probiotic Bifidobacterium animalis subsp. lactis BB-12 (BB12) to verify its safety and to investigate possible protection against subsequent infection with Salmonella Typhimurium strain LT2 (LT2). Clinical signs of salmonellosis, bacterial colonization in the intestine, bacterial translocation to mesenteric lymph nodes (MLN), blood, liver, spleen, and lungs, histopathological changes in the ileum, claudin-1 and occludin mRNA expression in the ileum and colon, intestinal and plasma concentrations of IL-8, TNF-α, and IL-10 were evaluated. Both BB12 and LT2 colonized the intestine of the monoassociated piglets. BB12 did not translocate in the BB12-monoassociated piglets. BB12 was detected in some cases in the MLN of piglets, consequently infected with LT2, but reduced LT2 counts in the ileum and liver of these piglets. LT2 damaged the luminal structure of the ileum, but a previous association with BB12 mildly alleviated these changes. LT2 infection upregulated claudin-1 mRNA in the ileum and colon and downregulated occludin mRNA in the colon. Infection with LT2 increased levels of IL-8, TNF-α, and IL-10 in the intestine and plasma, and BB12 mildly downregulated them compared to LT2 alone. Despite reductions in bacterial translocation and inflammatory cytokines, clinical signs of LT2 infection were not significantly affected by the probiotic BB12. Thus, we hypothesize that multistrain bacterial colonization of preterm gnotobiotic piglets may be needed to enhance the protective effect against the infection with S. Typhimurium LT2.
- Keywords
- Bifidobacterium animalis subsp. lactis BB-12, Salmonella Typhimurium, immunocompromised, inflammatory cytokines, intestinal barrier, preterm host,
- Publication type
- Journal Article MeSH
Dietary plant glucosides are phytochemicals whose bioactivity and bioavailability can be modified by glucoside hydrolase activity of intestinal microbiota through the release of acylglycones. Bifidobacteria are gut commensals whose genomic potential indicates host-adaption as they possess a diverse set of glycosyl hydrolases giving access to a variety of dietary glycans. We hypothesized bifidobacteria with β-glucosidase activity could use plant glucosides as fermentation substrate and tested 115 strains assigned to eight different species and from different hosts for their potential to express β-glucosidases and ability to grow in the presence of esculin, amygdalin, and arbutin. Concurrently, the antibacterial activity of arbutin and its acylglycone hydroquinone was investigated. Beta-glucosidase activity of bifidobacteria was species specific and most prevalent in species occurring in human adults and animal hosts. Utilization and fermentation profiles of plant glucosides differed between strains and might provide a competitive benefit enabling the intestinal use of dietary plant glucosides as energy sources. Bifidobacterial β-glucosidase activity can increase the bioactivity of plant glucosides through the release of acylglycone.
- Keywords
- amygdalin, antibacterial activity, arbutin, bifidobacteria, esculin, hydroquinone, β-glucosidase,
- Publication type
- Journal Article MeSH
Occurrence of bifidobacteria, known as health-promoting probiotic microorganisms, in the digestive tract of wild pigs (Sus scrofa) has not been examined yet. One hundred forty-nine fructose-6-phosphate phosphoketolase positive bacterial strains were isolated from colonic content of twenty-two individuals of wild pigs originated from four localities in the Czechia. Based on PCR-DGGE technique targeting the variable V3 region of the 16S rRNA genes, strains were initially differentiated into four groups represented by: (i) probably a new Bifidobacterium species (89 strains), (ii) B. boum/B. thermophilum/B. thermacidophilum subsp. porcinum/B. thermacidophilum subsp. thermacidophilum (sub)species (49 strains), (iii) Pseudoscardovia suis (7 strains), and (iv) B. pseudolongum subsp. globosum/B. pseudolongum subsp. pseudolongum (4 strains), respectively. Given the fact that DGGE technique did not allow to differentiate the representatives of thermophilic bifidobacteria and B. pseudolongum subspecies, strains were further classified by the 16S rRNA and thrS gene sequences. Primers targeting the variable regions of the latter gene were designed to be applicable in identification and phylogeny of Bifidobacteriaceae family. The 16S rRNA-derived phylogenetic study classified members of the first group into five subgroups in a separated cluster of thermophilic bifidobacteria. Comparable results were obtained by the thrS-derived phylogenetic analysis. Remarkably, variability among thrS sequences was higher compared with 16S rRNA gene sequences. Overall, molecular genetic techniques application allowed to identify a new Bifidobacterium phylotype which is predominant in the digestive tract of examined wild pigs.
- MeSH
- Genes, Bacterial MeSH
- Bifidobacterium chemistry classification genetics isolation & purification MeSH
- Animals, Wild * MeSH
- Phylogeny MeSH
- Gastrointestinal Tract microbiology MeSH
- Molecular Typing * methods MeSH
- Swine MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Sus scrofa microbiology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Ribosomal, 16S MeSH