Nejvíce citovaný článek - PubMed ID 28352085
Bisphenol S negatively affects the meotic maturation of pig oocytes
Bisphenol S (BPS), the main replacement for bisphenol A (BPA), is thought to be toxic, but limited information is available on the effects of Bisphenol S on ovarian follicles. In our study, we demonstrated the presence of Bisphenol S in the follicular fluid of women at a concentration of 22.4 nM. The effect of such concentrations of Bisphenol S on oocyte maturation and subsequent embryo development is still unknown. Therefore, we focused on the effect of Bisphenol S on in vitro oocyte maturation, fertilization, and embryo development. As a model, we used porcine oocytes, which show many physiological similarities to human oocytes. Oocytes were exposed to Bisphenol S concentrations similar to those detected in female patients in the ART clinic. We found a decreased ability of oocytes to successfully complete meiotic maturation. Mature oocytes showed an increased frequency of meiotic spindle abnormalities and chromosome misalignment. Alarming associations of oocyte Bisphenol S exposure with the occurrence of aneuploidy and changes in the distribution of mitochondria and mitochondrial proteins were demonstrated for the first time. However, the number and quality of blastocysts derived from oocytes that successfully completed meiotic maturation under the influence of Bisphenol S was not affected.
- Klíčová slova
- aneuploidy, bisphenol S (BPS), embryonic development, endocrine disruption, follicular fluid (FF), meiosis, oocyte,
- Publikační typ
- časopisecké články MeSH
Idiopathic infertility is a serious problem, which can be caused and explained by exposure to endocrine disruptors, such as bisphenols. In our study, we studied transactional exposure to bisphenol and its effects on newborn male mice throughout their reproductive life. Newborn male mice were exposed to bisphenol S and bisphenol F through maternal milk from post-natal day 0 to post-natal day 15 at concentrations of 0.1 ng.g/bw/day and 10 ng.g/bw/day, respectively. Although there were minimal differences between the control and experimental groups in testicular tissue quality and spermatozoa quality, we discovered an interesting influence on early embryonic development. Moderate doses of bisphenol negatively affected cleavage of the early embryo and subsequently, the blastocyst rate, as well as the number of blastomeres per blastocyst. In our study, we focused on correlations between particular stages from spermatogenesis to blastocyst development. We followed epigenetic changes such as dimethylation of histone H3 and phosphorylation of histone H2 from germ cells to blastocysts; we discovered the transfer of DNA double-strand breaks through the paternal pronucleus from spermatozoa to blastomeres in the blastocyst. We elucidated the impact of sperm DNA damage on early embryonic development, and our results indicate that idiopathic infertility in adulthood may have causes related to the perinatal period.
- Klíčová slova
- DNA damage, bisphenol, idiopathic infertility, nursing exposure, spermatogenesis,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Bisphenol S (BPS) is increasingly used as a replacement for bisphenol A in the manufacture of products containing polycarbonates and epoxy resins. However, further studies of BPS exposure are needed for the assessment of health risks to humans. In this study we assessed the potential harmfulness of low-dose BPS on reproduction in male mice. METHODS: To simulate human exposure under experimental conditions, 8-week-old outbred ICR male mice received 8 weeks of drinking water containing a broad range of BPS doses [0.001, 1.0, or 100 μg/kg body weight (bw)/day, BPS1-3] or vehicle control. Mice were sacrificed and testicular tissue taken for histological analysis and protein identification by nano-liquid chromatography/mass spectrometry (MS) and sperm collected for immunodetection of acetylated lysine and phosphorylated tyrosine followed by protein characterisation using matrix-assisted laser desorption ionisation time-of-flight MS (MALDI-TOF MS). RESULTS: The results indicate that compared to vehicle, 100 μg/kg/day exposure (BPS3) leads to 1) significant histopathology in testicular tissue; and, 2) higher levels of the histone protein γH2AX, a reliable marker of DNA damage. There were fewer mature spermatozoa in the germ layer in the experimental group treated with 1 μg/kg bw (BPS2). Finally, western blot and MALDI-TOF MS studies showed significant alterations in the sperm acetylome and phosphorylome in mice treated with the lowest exposure (0.001 μg/kg/day; BPS1), although the dose is several times lower than what has been published so far. CONCLUSIONS: In summary, this range of qualitative and quantitative findings in young male mice raise the possibility that very low doses of BPS may impair mammalian reproduction through epigenetic modifications of sperm proteins.
- Klíčová slova
- Bisphenol S, Endocrine disruptor, Low dose effect, Male reproduction, Post-translational modification,
- MeSH
- acetylace účinky léků MeSH
- endokrinní disruptory farmakologie MeSH
- epigeneze genetická MeSH
- fenoly farmakologie MeSH
- fosforylace účinky léků MeSH
- myši MeSH
- poškození DNA účinky léků MeSH
- posttranslační úpravy proteinů účinky léků MeSH
- spermie účinky léků MeSH
- sulfony farmakologie MeSH
- testis účinky léků patologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zrání spermie účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bisphenol S MeSH Prohlížeč
- endokrinní disruptory MeSH
- fenoly MeSH
- sulfony MeSH
Granulosa cells (GCs) are somatic cells essential for establishing and maintaining bi-directional communication with the oocytes. This connection has a profound importance for the delivery of energy substrates, structural components and ions to the maturing oocyte through gap junctions. Cumulus cells, group of closely associated GCs, surround the oocyte and can diminished the effect of harmful environmental insults. Both GCs and oocytes prefer different energy substrates in their cellular metabolism: GCs are more glycolytic, whereas oocytes rely more on oxidative phosphorylation pathway. The interconnection of these cells is emphasized by the fact that GCs supply oocytes with intermediates produced in glycolysis. The number of GCs surrounding the oocyte and their age affect the energy status of oocytes. This review summarises available studies collaboration of cellular types in the ovarian follicle from the point of view of energy metabolism, signaling and protection of toxic insults. A deeper knowledge of the underlying mechanisms is crucial for better methods to prevent and treat infertility and to improve the technology of in vitro fertilization.
- MeSH
- antioxidancia metabolismus MeSH
- energetický metabolismus MeSH
- folikulární buňky účinky léků metabolismus MeSH
- lidé MeSH
- metabolismus lipidů MeSH
- metabolismus sacharidů MeSH
- nebezpečné látky toxicita MeSH
- oocyty růst a vývoj metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- nebezpečné látky MeSH
- reaktivní formy kyslíku MeSH