Most cited article - PubMed ID 28471687
The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: why beneficial in animal experiments but not in the clinic?
Gliflozins (sodium-glucose transporter-2 inhibitors) exhibited renoprotective effects not only in diabetic but also in non-diabetic patients with chronic kidney disease (CKD). Controversial results were reported in experimental non-diabetic models of CKD. Therefore, we examined empagliflozin effects in three CKD models, namely, in fawn-hooded hypertensive (FHH) rats, uninephrectomized salt-loaded (UNX + HS) rats, and in rats with Goldblatt hypertension (two-kidney, one-clip 2K1C) that were either untreated or treated with empagliflozin (10 mg/kg/day) for eight weeks. Plethysmography blood pressure (BP) was recorded weekly, and renal parameters (proteinuria, plasma urea, creatinine clearance, and sodium excretion) were analyzed three times during the experiment. At the end of the study, blood pressure was also measured directly. Markers of oxidative stress (TBARS) and inflammation (MCP-1) were analyzed in kidney and plasma, respectively. Body weight and visceral adiposity were reduced by empagliflozin in FHH rats, without a significant effect on BP. Experimentally induced CKD (UNX + HS and 2K1C) was associated with a substantial increase in BP and relative heart and kidney weights. Empagliflozin influenced neither visceral adiposity nor BP in these two models. Although empagliflozin increased sodium excretion, suggesting effective SGLT-2 inhibition, it did not affect diuresis in any experimental model. Unexpectedly, empagliflozin did not provide renoprotection because proteinuria, plasma urea, and plasma creatinine were not lowered by empagliflozin treatment in all three CKD models. In line with these results, empagliflozin treatment did not decrease TBARS or MCP-1 levels in either model. In conclusion, empagliflozin did not provide the expected beneficial effects on kidney function in experimental models of CKD.
- Keywords
- SGLT-2 inhibition, fawn-hooded hypertensive rat, one-clip hypertension, proteinuria, two-kidney, uninephrectomized salt-loaded,
- Publication type
- Journal Article MeSH
INTRODUCTION: Previous studies in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX) have shown that besides pharmacological blockade of the renin-angiotensin system (RAS) also increasing kidney tissue epoxyeicosatrienoic acids (EET) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for degradation of EETs, and endothelin type A (ETA) receptor blockade retards chronic kidney disease (CKD) progression. This prompted us to evaluate if this progression will be alleviated by the addition of sEH inhibitor and ETA receptor antagonist to the standard complex blockade of RAS (angiotensin-converting enzyme inhibitor plus angiotensin II type 1 receptor blocker) in rats with established CKD. METHODS: The treatment regimens were initiated 6 weeks after 5/6 NX in TGR, and the follow-up period was 60 weeks. RESULTS: The addition of sEH inhibition to RAS blockade improved survival rate, further reduced albuminuria and renal glomerular and kidney tubulointerstitial injury, and attenuated the decline in creatinine clearance - all this as compared with 5/6 NX TGR treated with RAS blockade alone. Addition of ETA receptor antagonist to the combined RAS and sEH blockade not only offered no additional renoprotection but, surprisingly, also abolished the beneficial effects of adding sEH inhibitor to the RAS blockade. CONCLUSION: These data indicate that pharmacological strategies that combine the blockade of RAS and sEH could be a novel tool to combat the progression of CKD. Any attempts to further extend this therapeutic regimen should be made with extreme caution.
- Keywords
- 5/6 Renal mass reduction, Chronic kidney disease, Endothelin A receptor blocker, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase inhibitor,
- MeSH
- Endothelin A Receptor Antagonists pharmacology MeSH
- Renal Insufficiency, Chronic prevention & control MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Hypertension MeSH
- Rats MeSH
- Nephrectomy MeSH
- Rats, Transgenic MeSH
- Receptor, Endothelin A MeSH
- Renin-Angiotensin System drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Endothelin A Receptor Antagonists MeSH
- Epoxide Hydrolases MeSH
- Receptor, Endothelin A MeSH
OBJECTIVE: Our previous study in heterozygous Ren-2 transgenic rats (TGR) demonstrated that long-term treatment with endothelin receptor A (ETA) blocker atrasentan added to the renin-angiotensin system (RAS) blockade had renoprotective effects in a model of chronic kidney disease (CKD) induced by partial nephrectomy. Since ETA blockade is known to cause edema, we were interested whether diuretic treatment added to this therapy would be beneficial. DESIGN AND METHODS: Partial nephrectomy (NX) was performed at the age of 3 months in TGR rats which were subjected to: (i) RAS blockade alone (angiotensin receptor blocker losartan and angiotensin converting enzyme inhibitor trandolapril), (ii) combined RAS (losartan and trandolapril) and ETA receptor blockade (atrasentan), or (iii) diuretic (hydrochlorothiazide) added to the combined RAS + ETA blockade for 50 weeks following NX. RESULTS: At the end of the study systolic blood pressure and cardiac hypertrophy were similarly decreased in all treated groups. Survival was significantly improved by ETA receptor blockade added to RAS blockade with no further effects of diuretic treatment. However, additional diuretic treatment combined with RAS + ETA blockade decreased body weight and had beneficial renoprotective effects - reductions of both kidney weight and kidney damage markers. Proteinuria gradually increased in rats treated with RAS blockade alone, while it was substantially lowered by additional ETA blockade. In rats treated with additional diuretic, proteinuria was progressively reduced throughout the experiment. CONCLUSION: A diuretic added to the combined RAS and ETA blockade has late renoprotective effects in CKD induced by partial nephrectomy in Ren-2 transgenic rats. The diuretic improved: renal function (evaluated as proteinuria and creatinine clearance), renal morphology (kidney mass, glomerular volume), and histological markers of kidney damage (glomerulosclerosis index, tubulointerstitial injury).
- Keywords
- atrasentan, chronic kidney disease, hydrochlorothiazide, losartan, nephrectomy, renoprotection, trandolapril,
- Publication type
- Journal Article MeSH
BACKGROUND/AIMS: We found recently that increasing renal epoxyeicosatrienoic acids (EETs) levels by blocking soluble epoxide hydrolase (sEH), an enzyme responsible for EETs degradation, shows renoprotective actions and retards the progression of chronic kidney disease (CKD) in Ren-2 transgenic hypertensive rats (TGR) after 5/6 renal ablation (5/6 NX). This prompted us to examine if additional protection is provided when sEH inhibitor is added to the standard renin-angiotensin system (RAS) blockade, specifically in rats with established CKD. METHODS: For RAS blockade, an angiotensin-converting enzyme inhibitor along with an angiotensin II type receptor blocker was used. RAS blockade was compared to sEH inhibition added to the RAS blockade. Treatments were initiated 6 weeks after 5/6 NX in TGR and the follow-up period was 60 weeks. RESULTS: Combined RAS and sEH blockade exhibited additional positive impact on the rat survival rate, further reduced albuminuria, further reduced glomerular and tubulointerstitial injury, and attenuated the decline in creatinine clearance when compared to 5/6 NX TGR subjected to RAS blockade alone. These additional beneficial actions were associated with normalization of the intrarenal EETs deficient and a further reduction of urinary angiotensinogen excretion. CONCLUSION: This study provides evidence that addition of pharmacological inhibition of sEH to RAS blockade in 5/6 NX TGR enhances renoprotection and retards progression of CKD, notably, when applied at an advanced stage.
- Keywords
- 5/6 nephrectomy, Chronic kidney disease, Epoxyeicosatrienoic acids, Hypertension, Renin-angiotensin system, Soluble epoxide hydrolase,
- MeSH
- Albuminuria drug therapy MeSH
- Renal Insufficiency, Chronic drug therapy mortality physiopathology surgery MeSH
- Epoxide Hydrolases antagonists & inhibitors MeSH
- Hypertension MeSH
- Angiotensin-Converting Enzyme Inhibitors therapeutic use MeSH
- Drug Therapy, Combination MeSH
- Rats MeSH
- Survival Rate MeSH
- Nephrectomy MeSH
- Rats, Transgenic MeSH
- Renin-Angiotensin System drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Epoxide Hydrolases MeSH
- Angiotensin-Converting Enzyme Inhibitors MeSH