Nejvíce citovaný článek - PubMed ID 28636585
Microbiome: A Potential Component in the Origin of Mental Disorders
Trait anxiety is characterized as a constant and often subliminal state that persists during daily life. Interoception is the perception of internal states and sensations, including from the autonomic nervous system. This review aims to develop a predictive model to explain the emergence, manifestations, and maintenance of trait anxiety. The model begins with the assumption that anxiety states arise from active interoceptive inference. The subsequent activation of autonomic responses results from aversive sensory encounters. A cognitive model is proposed for trait anxiety that includes the aversive sensory components from interoception, exteroception, and proprioception. A further component of the hypothesis is that repeated exposure to subliminal anxiety-evoking sensory elements can lead to an overgeneralization of this response to other inputs that are generally non-aversive. Increased uncertainty may result when predicting the sensory environment, resulting in arbitrary interoceptive anxiety responses that may be due to unjustifiable causes. Arbitrary successful or unsuccessful matching of predictions and responses reduces the individual's confidence to maintain the anxiety trait. In this review, the application of the proposed model is illustrated using gut microbial dysbiosis or imbalance of the gut microbiome.
- MeSH
- dysbióza patofyziologie MeSH
- interocepce fyziologie MeSH
- kognice fyziologie MeSH
- lidé MeSH
- střevní mikroflóra fyziologie MeSH
- úzkost patofyziologie MeSH
- úzkostné poruchy patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Typical alkaloids expressed by prokaryotic and eukaryotic cells are small heterocyclic compounds containing weakly basic nitrogen groups that are critically important for mediating essential biological activities. The prototype opiate alkaloid morphine represents a low molecular mass heterocyclic compound that has been evolutionarily fashioned from a relatively restricted role as a secreted antimicrobial phytoalexin into a broad spectrum regulatory molecule. As an essential corollary, positive evolutionary pressure has driven the development of a cognate 6-transmembrane helical (TMH) domain μ3 opiate receptor that is exclusively responsive to morphine and related opiate alkaloids. A key aspect of "morphinergic" signaling mediated by μ3 opiate receptor activation is its functional coupling with regulatory pathways utilizing constitutive nitric oxide (NO) as a signaling molecule. Importantly, tonic and phasic intra-mitochondrial NO production exerts profound inhibitory effects on the rate of electron transport, H+ pumping, and O2 consumption. Given the pluripotent role of NO as a selective, temporally-defined chemical regulator of mitochondrial respiration and cellular bioenergetics, the expansion of prokaryotic denitrification systems into mitochondrial NO/nitrite cycling complexes represents a series of evolutionary modifications of existential proportions. Presently, our short review provides selective discussion of evolutionary development of morphine, opiate alkaloids, μ3 opiate receptors, and NO systems, within the perspectives of enhanced mitochondrial function, cellular bioenergetics, and the human microbiome.
- MeSH
- alkaloidy metabolismus MeSH
- biologická evoluce * MeSH
- energetický metabolismus * MeSH
- lidé MeSH
- mikrobiota * MeSH
- nitritreduktasy metabolismus MeSH
- oxid dusnatý metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- alkaloidy MeSH
- nitritreduktasy MeSH
- oxid dusnatý MeSH
Ten thousand years ago, the foundation for agricultural development and animal domestication was laid. Neolithic founder crops were carbohydrate-laden cereal grasses that facilitated transformation of hunter-gather societies into ancient civilizations with realistic capabilities for population expansion. In the last 3-4 decades, however, debilitating medical consequences of a progressively narrowed high caloric diet incorporating processed carbohydrates, animal protein, saturated fat and cholesterol, are translated into a global epidemic of obesity linked to metabolic and endocrine disorders, which, in part, emerged from the enhancement of our longevity. The initiation and progression of pathophysiological processes associated with this restrictive diet may well reside in the gastrointestinal tract. The critical role of human gut microbiome in facilitating normal gut physiology and linkages to other physiological systems points to its significance in comorbid pathologies when its diversity is compromised. Cortical desensitization to the potentially damaging effects of intentionally restricted high carbohydrate diets is progressively enhanced by compromised metabolic activities and widespread pro-inflammatory processes within all organ systems. Our cognitive ability must overcome the desire for comfort foods. The solution is simple: minimize "processed" foods and those of similar commercial origin in our diet, restoring a more diverse gut microbiome. Initially the solution may be costly, however, within the scope of sustained healthy longevity it will "payoff".
- MeSH
- dieta MeSH
- dietní sacharidy škodlivé účinky MeSH
- gastrointestinální trakt mikrobiologie MeSH
- kognice fyziologie MeSH
- lidé MeSH
- obezita dietoterapie MeSH
- střevní mikroflóra fyziologie MeSH
- zdraví trendy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- úvodníky MeSH
- Názvy látek
- dietní sacharidy MeSH