Nejvíce citovaný článek - PubMed ID 28736303
In recent years, it has been recognized that mechanical forces play an important regulative role in living organisms and possess a direct impact on crucial cell functions, ranging from cell growth to maintenance of tissue homeostasis. Advancements in mechanobiology have revealed the profound impact of mechanical signals on diverse cellular responses that are cell type specific. Notably, numerous studies have elucidated the pivotal role of different mechanical cues as regulatory factors influencing various cellular processes, including cell spreading, locomotion, differentiation, and proliferation. Given these insights, it is unsurprising that the responses of cells regulated by physical forces are intricately linked to the modulation of nanoparticle uptake kinetics and processing. This complex interplay underscores the significance of understanding the mechanical microenvironment in shaping cellular behaviors and, consequently, influencing how cells interact with and process nanoparticles. Nevertheless, our knowledge on how localized physical forces affect the internalization and processing of nanoparticles by cells remains rather limited. A significant gap exists in the literature concerning a systematic analysis of how mechanical cues might bias the interactions between nanoparticles and cells. Hence, our aim in this review is to provide a comprehensive and critical analysis of the existing knowledge regarding the influence of mechanical cues on the complicated dynamics of cell-nanoparticle interactions. By addressing this gap, we would like to contribute to a detailed understanding of the role that mechanical forces play in shaping the complex interplay between cells and nanoparticles.
- Klíčová slova
- Extracellular matrix, Mechanical cues, Mechanotransduction, Nanomedicine; Nanoparticles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Our aim was to study the expression of hypoxia-related proteins as a possible regulatory pathway in the contracted side tissue of relapsed clubfoot. We compared the expression of hypoxia-related proteins in the tissue of the contracted (medial) side of relapsed clubfoot, and in the tissue of the non-contracted (lateral) side of relapsed clubfoot. Tissue samples from ten patients were analyzed by immunohistochemistry and image analysis, Real-time PCR and Mass Spectrometry to evaluate the differences in protein composition and gene expression. We found a significant increase in the levels of smooth muscle actin, transforming growth factor-beta, hypoxia-inducible factor 1 alpha, lysyl oxidase, lysyl oxidase-like 2, tenascin C, matrix metalloproteinase-2, matrix metalloproteinase-9, fibronectin, collagen types III and VI, hemoglobin subunit alpha and hemoglobin subunit beta, and an overexpression of ACTA2, FN1, TGFB1, HIF1A and MMP2 genes in the contracted medial side tissue of clubfoot. In the affected tissue, we have identified an increase in the level of hypoxia-related proteins, together with an overexpression of corresponding genes. Our results suggest that the hypoxia-associated pathway is potentially a factor contributing to the etiology of clubfoot relapses, as it stimulates both angioproliferation and fibroproliferation, which are considered to be key factors in the progression and development of relapses.
- MeSH
- hemoglobin - podjednotky MeSH
- hypoxie komplikace genetika MeSH
- lidé MeSH
- matrixová metaloproteinasa 2 genetika MeSH
- pes equinovarus * genetika MeSH
- recidiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hemoglobin - podjednotky MeSH
- matrixová metaloproteinasa 2 MeSH
Congenital clubfoot is a complex musculoskeletal deformity, in which a stiff, contracted tissue forms in the medial part of the foot. Fibrotic changes are associated with increased collagen deposition and lysyl oxidase (LOX)-mediated crosslinking, which impair collagen degradation and increase the tissue stiffness. First, we studied collagen deposition, as well as the expression of collagen and the amount of pyridinoline and deoxypyridinoline crosslinks in the tissue of relapsed clubfoot by immunohistochemistry, real-time PCR, and enzyme-linked immunosorbent assay (ELISA). We then isolated fibroblast-like cells from the contracted tissue to study the potential inhibition of these processes in vitro. We assessed the effects of a LOX inhibitor, β-aminopropionitrile (BAPN), on the cells by a hydroxyproline assay, ELISA, and Second Harmonic Generation imaging. We also evaluated the cell-mediated contraction of extracellular matrix in 3D cell-populated collagen gels. For the first time, we have confirmed significantly increased crosslinking and excessive collagen type I deposition in the clubfoot-contracted tissue. We successfully reduced these processes in vitro in a dose-dependent manner with 10-40 µg/mL of BAPN, and we observed an increasing trend in the inhibition of the cell-mediated contraction of collagen gels. The in vitro inhibitory effects indicate that BAPN has good potential for the treatment of relapsed and resistant clubfeet.
- Klíčová slova
- beta-aminopropionitrile (BAPN), collagen, congenital idiopathic Talipes equinovarus, contraction, crosslinking, fibrosis, relapsed clubfoot,
- MeSH
- aminopropionitril farmakologie MeSH
- fibroblasty účinky léků MeSH
- kolagen chemie MeSH
- lidé MeSH
- lysyloxidasa antagonisté a inhibitory MeSH
- pes equinovarus farmakoterapie metabolismus patologie MeSH
- předškolní dítě MeSH
- reagencia zkříženě vázaná farmakologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminopropionitril MeSH
- kolagen MeSH
- LOX protein, human MeSH Prohlížeč
- lysyloxidasa MeSH
- reagencia zkříženě vázaná MeSH
Circulating miRNAs have been proposed as the effective diagnostic biomarkers for muscular fibrosis-associated diseases. However, circulating biomarkers for early diagnosis of contracture muscles are limited in gluteal muscle contracture (GMC) patients. Here we sought to explore the abnormally expressed miRNAs in plasma and contraction bands of GMC patients. The results showed miR-29a-3p expression in plasma and contraction bands tissue was significantly reduced in GMC patients compared with normal control. Cell viability and levels of proliferation-associated protein cyclin D1 and cyclin-dependent-kinase 2 (CDK2) were powerfully inhibited by miR-29a mimics and enhanced by miR-29a inhibitor compared with negative control. Furthermore, miR-29a mimics effectively impeded, while miR-29a inhibitor enhanced the expression of collagen I and collagen III, followed by the secretion of transforming growth factor beta1 (TGF-beta1), TGF-beta3 and connective tissue growth factor (CTGF) in primary human contraction bands (CB) fibroblasts. The miR-29a-3p negatively regulated the expression of TGF-beta1 through binding to the 3´ UTR region of SERPINH1 (encoding heat shock protein HSP47), but had no effect on Smad2 activity. The miR-29a-3p was inversely correlated with HSP47 in contraction bands tissue from GMC patients. Collectively, miR-29a was notably depressed and regulated cell viability and fibrosis by directly targeting HSP47 in GMC, which suggest that circulating miR-29a might be a potential biomarker for early diagnosis and provides a novel therapeutic target for GMC.
- MeSH
- biologické markery metabolismus MeSH
- dospělí MeSH
- fibroblasty metabolismus patologie MeSH
- fibróza genetika patologie prevence a kontrola MeSH
- hýždě patologie MeSH
- kontraktura genetika patologie prevence a kontrola MeSH
- kultivované buňky MeSH
- lidé MeSH
- mikro RNA genetika MeSH
- proteiny tepelného šoku HSP47 genetika metabolismus MeSH
- studie případů a kontrol MeSH
- svaly metabolismus patologie MeSH
- transformující růstový faktor beta1 genetika metabolismus MeSH
- viabilita buněk fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA MeSH
- MIRN29a microRNA, human MeSH Prohlížeč
- proteiny tepelného šoku HSP47 MeSH
- SERPINH1 protein, human MeSH Prohlížeč
- TGFB1 protein, human MeSH Prohlížeč
- transformující růstový faktor beta1 MeSH