Nejvíce citovaný článek - PubMed ID 28758293
Protected areas offer refuge from invasive species spreading under climate change
Biological invasions are a major threat to biodiversity, ecosystem functioning and nature's contributions to people worldwide. However, the effectiveness of invasive alien species (IAS) management measures and the progress toward achieving biodiversity targets remain uncertain due to limited and nonuniform data availability. Management success is usually assessed at a local level and documented in technical reports, often written in languages other than English, which makes such data notoriously difficult to collect at large geographic scales. Here we present the first European assessment of how managers perceive trends in IAS and the effectiveness of management measures to mitigate biological invasions. We developed a structured questionnaire translated into 18 languages and disseminated it to local and regional managers of IAS in Europe. We received responses from 1928 participants from 41 European countries, including 24 European Union (EU) Member States. Our results reveal substantial efforts in IAS monitoring and control, with invasive plants being the primary focus. Yet, there is a general perception of an increase in the numbers, occupied areas, and impacts of IAS across environment and taxonomic groups, particularly plants, over time. This perceived increase is consistent across both EU and non-EU countries, with respondents from EU countries demonstrating more certainty in their responses. Our results also indicate a lack of data on alien vertebrates and invertebrates, reflecting a need for more targeted monitoring and knowledge sharing between managers and policymakers and between countries. Overall, our study suggests that Europe's current strategies are insufficient to substantially reduce IAS by 2030 and hence to meet the Kunming-Montreal Global Biodiversity Framework target.
- Klíčová slova
- environmental perception, exotic species, expert survey, invasive alien species, management practices, non‐native species, policy,
- MeSH
- biodiverzita MeSH
- průzkumy a dotazníky MeSH
- zachování přírodních zdrojů * metody MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
In a hyperconnected world, framing and managing biological invasions poses complex and contentious challenges, affecting socioeconomic and environmental sectors. This complexity distinguishes the field and fuels polarized debates. In the present article, we synthesize four contentious issues in invasion science that are rarely addressed together: vocabulary usage, the potential benefits of nonnative species, perceptions shifting because of global change, and rewilding practices and biological invasions. Researchers have predominantly focused on single issues; few have addressed multiple components of the debate within or across disciplinary boundaries. Ignoring the interconnected nature of these issues risks overlooking crucial cross-links. We advocate for interdisciplinary approaches that better integrate social and natural sciences. Although they are challenging, interdisciplinary collaborations offer hope to overcome polarization issues in invasion science. These may bridge disagreements, facilitate knowledge exchange, and reshape invasion science narratives. Finally, we present a contemporary agenda to advance future research, management, and constructive dialogue.
- Klíčová slova
- conservation biology, human–wildlife interactions, invasion science, invasive species, natural resource management,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Human threats to biodiversity are prevalent within protected areas (PAs), undermining their effectiveness in halting biodiversity loss. Certain threats tend to co-occur, resulting in amplified cumulative impact through synergistic effects. However, it remains unclear which threats are related the most. We analyzed a dataset of 71 human threats in 18 013 terrestrial PAs of the European Union's Natura 2000 network, using a Joint Species Distribution Modelling approach, to assess the threats' co-occurrence patterns and potential drivers. Overall, threats were more frequently correlated positively than negatively. Threats related to agriculture and urbanization were correlated strongly with most other threats. Approximately 70% of the variance in our model was explained by country-specific factors, indicating the importance of local drivers. Minimizing the negative impact of key threats can likely reduce the impact of related threats. However, more research is needed to understand better the relationships among threats and, importantly, their combined impact on biodiversity.
- Klíčová slova
- Anthropogenic impact, Biodiversity conservation, Human pressure, Joint Species Distribution Modeling, Natura 2000, Post-2020 Global Biodiversity Framework,
- MeSH
- biodiverzita * MeSH
- ekosystém MeSH
- lidé MeSH
- urbanizace MeSH
- zachování přírodních zdrojů * metody MeSH
- zemědělství MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Protected Areas (PAs) are the cornerstone of biodiversity conservation. Here, we collated distributional data for >14,000 (~70% of) species of amphibians and reptiles (herpetofauna) to perform a global assessment of the conservation effectiveness of PAs using species distribution models. Our analyses reveal that >91% of herpetofauna species are currently distributed in PAs, and that this proportion will remain unaltered under future climate change. Indeed, loss of species' distributional ranges will be lower inside PAs than outside them. Therefore, the proportion of effectively protected species is predicted to increase. However, over 7.8% of species currently occur outside PAs, and large spatial conservation gaps remain, mainly across tropical and subtropical moist broadleaf forests, and across non-high-income countries. We also predict that more than 300 amphibian and 500 reptile species may go extinct under climate change over the course of the ongoing century. Our study highlights the importance of PAs in providing herpetofauna with refuge from climate change, and suggests ways to optimize PAs to better conserve biodiversity worldwide.
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- obojživelníci MeSH
- plazi MeSH
- zachování přírodních zdrojů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species - the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods - are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions.
- Klíčová slova
- biological invasions, biosecurity, environmental impacts, global change, invasion dynamics, invasion hotspots, naturalization, policy, protected areas, socioeconomic impacts,
- MeSH
- biodiverzita MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- hustota populace MeSH
- krysa rodu Rattus MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH