Nejvíce citovaný článek - PubMed ID 28764130
Sewage sludge (SS) has been connected to a variety of global environmental problems. Assessing the risk of various disposal techniques can be quite useful in recommending appropriate management. The preparation of sewage sludge biochar (SSB) and its impacts on soil characteristics, plant health, nutrient leaching, and greenhouse gas emissions (GHGs) are critically reviewed in this study. Comparing the features of SSB obtained at various pyrolysis temperatures revealed changes in its elemental content. Lower hydrogen/carbon ratios in SSB generated at higher pyrolysis temperatures point to the existence of more aromatic carbon molecules. Additionally, the preparation of SSB has an increased ash content, a lower yield, and a higher surface area as a result of the rise in pyrolysis temperature. The worldwide potential of SS output and CO2-equivalent emissions in 2050 were predicted as factors of global population and common disposal management in order to create a futuristic strategy and cope with the quantity of abundant global SS. According to estimations, the worldwide SS output and associated CO2-eq emissions were around 115 million tons dry solid (Mt DS) and 14,139 teragrams (Tg), respectively, in 2020. This quantity will rise to about 138 Mt DS sewage sludge and 16985 Tg CO2-eq emissions in 2050, a 20% increase. In this regard, developing and populous countries may support economic growth by utilizing low-cost methods for producing biochar and employing it in local agriculture. To completely comprehend the benefits and drawbacks of SSB as a soil supplement, further study on long-term field applications of SSB is required.
- Klíčová slova
- GHG emissions, carbon cycle, plant health, soil amendment, waste management,
- MeSH
- dřevěné a živočišné uhlí MeSH
- odpadní vody * MeSH
- oxid uhličitý analýza MeSH
- půda MeSH
- skleníkové plyny * MeSH
- studie proveditelnosti MeSH
- uhlík MeSH
- vodík MeSH
- zemědělství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biochar MeSH Prohlížeč
- dřevěné a živočišné uhlí MeSH
- odpadní vody * MeSH
- oxid uhličitý MeSH
- půda MeSH
- skleníkové plyny * MeSH
- uhlík MeSH
- vodík MeSH
The study aims were focused on profiling eight hydrolytic enzymes by fluorescence method using a multifunctional modular reader and studying the proportion of basic microorganism groups during composting and vermicomposting of sewage sludge mixed with straw pellets in several proportions (0, 25, 50, 75, and 100%). The greatest decrease in enzymatic activity occurred in the first half of composting and vermicomposting. After 4 months of these processes, the least enzymatic activity was observed in the sludge with 50% and also 25% straw addition, indicating that straw is an important means for the rapid production of mature compost from sewage sludge. Enzymatic activity was usually less in the presence of earthworms than in the control treatment because some processes took place in the digestive tract of the earthworm. For the same reason, we observed reduced enzyme activity during fresh feedstock vermicomposting than precomposted material. The final vermicompost from fresh feedstocks exhibited less microbial biomass, and few fungi and G- bacteria compared to precomposted feedstock. The enzymatic activity during composting and vermicomposting of sewage sludge and their mixtures stabilized at the following values: β-D-glucosidase-50 μmol MUFG/h/g dw, acid phosphatase-200 μmol MUFP/h/g dw, arylsulphatase-10 μmol MUFS/h/g dw, lipase-1,000 μmol MUFY/h/g dw, chitinase-50 μmol MUFN/h/g dw, cellobiohydrolase-20 μmol MUFC/h/g dw, alanine aminopeptidase-50 μmol AMCA/h/g dw, and leucine aminopeptidase-50 μmol AMCL/h/g dw. At these and lesser values, these final products can be considered mature and stable.
- Klíčová slova
- composting, earthworms, enzymatic activity, microorganisms, sewage sludge, straw pellets, vermicomposting,
- Publikační typ
- časopisecké články MeSH