Nejvíce citovaný článek - PubMed ID 28779073
Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM). Through a combination of experimental measurements, including surface roughness analysis, scanning electron microscopy, and cooling system flow analysis, this study elucidates the impact of surface roughness on coolant flow dynamics and pressure distribution within the cooling channels. The results reveal significant differences in surface roughness between DMLS and ADAM technologies, with corresponding effects on coolant flow behavior. Following that fact, this study shows that when cooling channels' surface roughness is lowered up to 90%, the reduction in coolant media pressure is lowered by 0.033 MPa. Regression models are developed to quantitatively describe the relationship between surface roughness and key parameters, such as coolant pressure, Reynolds number, and flow velocity. Practical implications for the optimization of injection molding cooling systems are discussed, highlighting the importance of informed decision making in technology selection and post-processing techniques. Overall, this research contributes to a deeper understanding of the role of surface roughness in injection molding processes and provides valuable insights for enhancing cooling system efficiency and product quality.
- Klíčová slova
- ADAM, DMLS, additive manufacturing, conformal cooling channels, injection molding, regression, surface roughness,
- Publikační typ
- časopisecké články MeSH
Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of parts produced by additive manufacturing (shortly, AM parts) with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and the residual stresses. Based on these aspects, basic concepts are reviewed and critically discussed specifically for AM materials: Criteria for damage tolerant component design;Criteria for the determination of fatigue and fracture properties;Strategies for the determination of the fatigue life in dependence of different manufacturing conditions;Methods for the quantitative characterization of microstructure and defects;Methods for the determination of residual stresses;Effect of the defects and the residual stresses on the fatigue life and behaviour. We see that many of the classic concepts need to be expanded in order to fit with the particular microstructure (grain size and shape, crystal texture) and defect distribution (spatial arrangement, size, shape, amount) present in AM (in particular laser powder bed fusion). For instance, 3D characterization of defects becomes essential, since the defect shapes in AM are diverse and impact the fatigue life in a different way than in the case of conventionally produced components. Such new concepts have immediate consequence on the way one should tackle the determination of the fatigue life of AM parts; for instance, since a classification of defects and a quantification of the tolerable shapes and sizes is still missing, a new strategy must be defined, whereby theoretical calculations (e.g. FEM) allow determining the maximum tolerable defect size, and non-destructive testing (NDT) techniques are required to detect whether such defects are indeed present in the component. Such examples show how component design, damage and failure criteria, and characterization (and/or NDT) become for AM parts fully interlinked. We conclude that the homogenization of these fields represents the current challenge for the engineer and the materials scientist.
- Klíčová slova
- Additive manufacturing, component assessment, damage tolerance, defects, fatigue loading, residual stresses,
- Publikační typ
- časopisecké články MeSH
This paper deals with the investigation of complex corrosion properties of 3D printed AISI 316L steel and the influence of additional heat treatment on the resulting corrosion and mechanical parameters. There was an isotonic solution used for the simulation of the human body and a diluted sulfuric acid solution for the study of intergranular corrosion damage of the tested samples. There were significant microstructural changes found for each type of heat treatment at 650 and 1050 °C, which resulted in different corrosion properties of the tested samples. There were changes of corrosion potential, corrosion rate and polarization resistance found by the potentiodynamic polarization method. With regard to these results, the most appropriate heat treatment can be applied to applications with intended use in medicine.
- Klíčová slova
- additive manufacturing, biocompatibility, corrosion, heat treatment, implants, polarization, wettability,
- Publikační typ
- časopisecké články MeSH