Most cited article - PubMed ID 29097168
Synthesis and biological evolution of hydrazones derived from 4-(trifluoromethyl)benzohydrazide
CONTEXT: Various concentrations of (E)-4-methoxy-N'-(2-(trifluoromethyl)benzylidene) benzohydrazide (EMT) adsorbed on colloidal silver nanoparticles were studied using SERS and results were compared to the normal Raman spectrum. DFT calculations were used to validate experimental findings. Theoretically, the structures of the EMT and EMT-Ag6 systems were optimized. The UV-Vis spectral analysis's red shift and lower intensity behavior show that EMT has chemisorbed onto Ag nanoparticles. Charge transfer (CT) from Ag to EMT is highlighted by FMO analysis. The CT interaction in EMT and EMT-Ag6 was further verified by MEP and Mulliken charge analyses. The EMT was adsorbed on Ag nanoparticles with tilted orientation and orientation changes with colloidal concentration, according to SERS spectrum analysis. Docking EMT with 4PQE and 5DYW binding affinities are found to be -9.7 and -8.1 kcal/mol. MD simulations give the competence of 5DYW-EMT and 4PQE-EMT in their intended binding interactions and their ability to establish enduring associations with the protein of interest. METHODS: DFT was used to optimize the molecular structures of EMT and EMT-Ag6 using B3LYP/6-311++G* (LANL2DZ basis set for Ag). A molecular dynamics simulation study was conducted on the 4PQE-EMT and 5DYW-EMT systems using the Desmond software for 100 ns.
- Keywords
- Adsorption, Benzyohydrazide: Silver cluster, DFT, SERS,
- MeSH
- Acetylcholinesterase MeSH
- Butyrylcholinesterase * MeSH
- Metal Nanoparticles * chemistry MeSH
- Humans MeSH
- Spectrum Analysis, Raman methods MeSH
- Silver chemistry MeSH
- Density Functional Theory MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase * MeSH
- colloidal silver MeSH Browser
- Silver MeSH
A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.
- Keywords
- acetylcholinesterase, aminoguanidine, antimicrobial activity, butyrylcholinesterase, cytotoxicity, enzyme inhibition, hydrazones, molecular docking, salicylaldehydes,
- Publication type
- Journal Article MeSH
Based on the broad spectrum of biological activity of hydrazide-hydrazones, trifluoromethyl compounds, and clinical usage of cholinesterase inhibitors, we investigated hydrazones obtained from 4-(trifluoromethyl)benzohydrazide and various benzaldehydes or aliphatic ketones as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). They were evaluated using Ellman's spectrophotometric method. The hydrazide-hydrazones produced a dual inhibition of both cholinesterase enzymes with IC50 values of 46.8-137.7 µM and 19.1-881.1 µM for AChE and BuChE, respectively. The majority of the compounds were stronger inhibitors of AChE; four of them (2-bromobenzaldehyde, 3-(trifluoromethyl)benzaldehyde, cyclohexanone, and camphor-based 2o, 2p, 3c, and 3d, respectively) produced a balanced inhibition of the enzymes and only 2-chloro/trifluoromethyl benzylidene derivatives 2d and 2q were found to be more potent inhibitors of BuChE. 4-(Trifluoromethyl)-N'-[4-(trifluoromethyl)benzylidene]benzohydrazide 2l produced the strongest inhibition of AChE via mixed-type inhibition determined experimentally. Structure-activity relationships were identified. The compounds fit physicochemical space for targeting central nervous systems with no apparent cytotoxicity for eukaryotic cell line together. The study provides new insights into this CF3-hydrazide-hydrazone scaffold.
- Keywords
- 4-(trifluoromethyl)benzohydrazide, acetylcholinesterase inhibition, butyrylcholinesterase inhibition, enzyme inhibition, hydrazides, hydrazones,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Butyrylcholinesterase metabolism MeSH
- Central Nervous System drug effects MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Blood-Brain Barrier drug effects pathology MeSH
- Hydrazines chemistry MeSH
- Hydrazones chemistry pharmacology MeSH
- Kinetics MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Hydrazines MeSH
- Hydrazones MeSH
Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).
- Keywords
- 4-(trifluoromethyl)benzohydrazide, acetylcholinesterase inhibition, antimycobacterial activity, butyrylcholinesterase inhibition, cytostatic properties, hydrazides,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Anti-Infective Agents * chemical synthesis chemistry pharmacology MeSH
- Hep G2 Cells MeSH
- Butyrylcholinesterase metabolism MeSH
- Cholinesterase Inhibitors * chemical synthesis chemistry pharmacology MeSH
- GPI-Linked Proteins metabolism MeSH
- Imidazoles * chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Mycobacterium avium growth & development MeSH
- Mycobacterium kansasii growth & development MeSH
- Mycobacterium tuberculosis growth & development MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- ACHE protein, human MeSH Browser
- Anti-Infective Agents * MeSH
- Butyrylcholinesterase MeSH
- Cholinesterase Inhibitors * MeSH
- GPI-Linked Proteins MeSH
- Imidazoles * MeSH
4-aminobenzoic acid (PABA), an essential nutrient for many human pathogens, but dispensable for humans, and its derivatives have exhibited various biological activities. In this study, we combined two pharmacophores using a molecular hybridization approach: this vitamin-like molecule and various aromatic aldehydes, including salicylaldehydes and 5-nitrofurfural, via imine bond in one-step reaction. Resulting Schiff bases were screened as potential antimicrobial and cytotoxic agents. The simple chemical modification of non-toxic PABA resulted in constitution of antibacterial activity including inhibition of methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 15.62 µM), moderate antimycobacterial activity (MIC ≥ 62.5 µM) and potent broad-spectrum antifungal properties (MIC of ≥ 7.81 µM). Some of the Schiff bases also exhibited notable cytotoxicity for cancer HepG2 cell line (IC50 ≥ 15.0 µM). Regarding aldehyde used for the derivatization of PABA, it is possible to tune up the particular activities and obtain derivatives with promising bioactivities.
- Keywords
- 4-aminobenzoic acid, Schiff bases, antibacterial activity, antifungal activity, cytotoxicity, synthesis, vitamin,
- MeSH
- Anti-Bacterial Agents chemistry pharmacology MeSH
- Hep G2 Cells MeSH
- Cytotoxins chemistry pharmacology MeSH
- 4-Aminobenzoic Acid chemistry pharmacology MeSH
- Folic Acid chemistry pharmacology MeSH
- Humans MeSH
- Methicillin-Resistant Staphylococcus aureus drug effects growth & development MeSH
- Microbial Sensitivity Tests MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Cytotoxins MeSH
- 4-Aminobenzoic Acid MeSH
- Folic Acid MeSH