Most cited article - PubMed ID 29283048
Compensatory Shift of Subcallosal Area and Paraterminal Gyrus White Matter Parameters on DTI in Patients with Alzheimer Disease
The volume reduction of the gray matter structures in patients with Alzheimer's disease is often accompanied by an asymmetric increase in the number of white matter fibers located close to these structures. The present study aims to investigate the white matter structure changes in the motor basal ganglia in Alzheimer's disease patients compared to healthy controls using diffusion tensor imaging. The amounts of tracts, tract length, tract volume, quantitative anisotropy, and general fractional anisotropy were measured in ten patients with Alzheimer's disease and ten healthy controls. A significant decrease in the number of tracts and general fractional anisotropy was found in patients with Alzheimer's disease compared to controls in the right caudate nucleus, while an increase was found in the left and the right putamen. Further, a significant decrease in the structural volume of the left and the right putamen was observed. An increase in the white matter diffusion tensor imaging parameters in patients with Alzheimer's disease was observed only in the putamen bilaterally. The right caudate showed a decrease in both the diffusion tensor imaging parameters and the volume in Alzheimer's disease patients. The right pallidum showed an increase in the diffusion tensor imaging parameters but a decrease in volume in Alzheimer's disease patients.
- Keywords
- Alzheimer’s disease, DTI, basal ganglia, compensatory changes, white matter,
- MeSH
- Alzheimer Disease * diagnostic imaging MeSH
- White Matter * diagnostic imaging MeSH
- Humans MeSH
- Putamen diagnostic imaging MeSH
- Gray Matter diagnostic imaging MeSH
- Diffusion Tensor Imaging methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
AIMS: The purpose of the study was to evaluate the reliability of our new visual scale for a quick atrophy assessment of parietal lobes on brain Magnetic Resonance Imaging (MRI) among different professionals. A good agreement would justify its use for differential diagnosis of neurodegenerative dementias, especially early-onset Alzheimer's Disease (AD), in clinical settings. METHODS: The visual scale named the Parietal Atrophy Score (PAS) is based on a semi-quantitative assessment ranging from 0 (no atrophy) to 2 (prominent atrophy) in three parietal structures (sulcus cingularis posterior, precuneus, parietal gyri) on T1-weighted MRI coronal slices through the whole parietal lobes. We used kappa statistics to evaluate intra-rater and inter-rater agreement among four raters who independently scored parietal atrophy using PAS. Rater 1 was a neuroanatomist (JM), rater 2 was an expert in MRI acquisition and analysis (II), rater 3 was a medical student (OP) and rater 4 was a neurologist (DS) who evaluated parietal atrophy twice in a 3-month interval to assess intra-rater agreement. All raters evaluated the same 50 parietal lobes on brain MRI of 25 cognitively normal individuals with even distribution across all atrophy degrees from none to prominent according to the neurologist's rating. RESULTS: Intra-rater agreement was almost perfect with the kappa value of 0.90. Inter-rater agreement was moderate to substantial with kappa values ranging from 0.43-0.86. CONCLUSION: The Parietal Atrophy Score is the reliable visual scale among raters of different professions for a quick evaluation of parietal lobes on brain MRI within 1-2 minutes. We believe it could be used as an adjunct measure in differential diagnosis of dementias, especially early-onset AD.
- Keywords
- Alzheimer's disease, Parietal Atrophy Score, brain magnetic resonance imaging, dementia, reliability, visual scale,
- MeSH
- Atrophy MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain diagnostic imaging pathology MeSH
- Neuroimaging MeSH
- Observer Variation MeSH
- Reproducibility of Results MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Severity of Illness Index MeSH
- Parietal Lobe diagnostic imaging pathology MeSH
- Mental Status and Dementia Tests MeSH
- Visual Analog Scale MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH