• This record comes from PubMed

The Parietal Atrophy Score on Brain Magnetic Resonance Imaging is a Reliable Visual Scale

. 2020 ; 17 (6) : 534-539.

Language English Country United Arab Emirates Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

AIMS: The purpose of the study was to evaluate the reliability of our new visual scale for a quick atrophy assessment of parietal lobes on brain Magnetic Resonance Imaging (MRI) among different professionals. A good agreement would justify its use for differential diagnosis of neurodegenerative dementias, especially early-onset Alzheimer's Disease (AD), in clinical settings. METHODS: The visual scale named the Parietal Atrophy Score (PAS) is based on a semi-quantitative assessment ranging from 0 (no atrophy) to 2 (prominent atrophy) in three parietal structures (sulcus cingularis posterior, precuneus, parietal gyri) on T1-weighted MRI coronal slices through the whole parietal lobes. We used kappa statistics to evaluate intra-rater and inter-rater agreement among four raters who independently scored parietal atrophy using PAS. Rater 1 was a neuroanatomist (JM), rater 2 was an expert in MRI acquisition and analysis (II), rater 3 was a medical student (OP) and rater 4 was a neurologist (DS) who evaluated parietal atrophy twice in a 3-month interval to assess intra-rater agreement. All raters evaluated the same 50 parietal lobes on brain MRI of 25 cognitively normal individuals with even distribution across all atrophy degrees from none to prominent according to the neurologist's rating. RESULTS: Intra-rater agreement was almost perfect with the kappa value of 0.90. Inter-rater agreement was moderate to substantial with kappa values ranging from 0.43-0.86. CONCLUSION: The Parietal Atrophy Score is the reliable visual scale among raters of different professions for a quick evaluation of parietal lobes on brain MRI within 1-2 minutes. We believe it could be used as an adjunct measure in differential diagnosis of dementias, especially early-onset AD.

See more in PubMed

Dubois B., Feldman H.H., Jacova C., et al. Research criteria for the diagnosis of Alzheimer’s disease: Revising the NINCDS-ADRDA criteria. Lancet Neurol. 2007;6(8):734–746. doi: 10.1016/S1474-4422(07)70178-3. PubMed DOI

Jack C.R., Jr, Albert M.S., Knopman D.S., et al. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):257–262. doi: 10.1016/j.jalz.2011.03.004. PubMed DOI PMC

McKhann G.M., Knopman D.S., Chertkow H., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC

Yu E., Liao Z., Mao D., et al. Directed functional connectivity of posterior cingulate cortex and whole brain in Alzheimer’s disease and mild cognitive impairment. Curr. Alzheimer Res. 2017;14(6):628–635. doi: 10.2174/1567205013666161201201000. PubMed DOI

Yang Z., Wen W., Jiang J., et al. Structural MRI biomarkers of mild cognitive impairment from young elders to centenarians. Curr. Alzheimer Res. 2016;13(3):256–267. doi: 10.2174/1567205013666151218150534. PubMed DOI

Harper L., Barkhof F., Scheltens P., Schott J.M., Fox N.C. An algorithmic approach to structural imaging in dementia. J. Neurol. Neurosurg. Psychiatry. 2014;85(6):692–698. doi: 10.1136/jnnp-2013-306285. PubMed DOI PMC

Jack C.R., Jr, Shiung M.M., Gunter J.L., et al. Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology. 2004;62(4):591–600. doi: 10.1212/01.WNL.0000110315.26026.EF. PubMed DOI PMC

Fennema-Notestine C., McEvoy L.K., Hagler D.J., Jr, Jacobson M.W., Dale A.M. The Alzheimer’s Disease Neuroimaging Initiative. Structural neuroimaging in the detection and prognosis of pre-clinical and early AD. Behav. Neurol. 2009;21(1):3–12. doi: 10.1155/2009/698156. PubMed DOI PMC

Liu Y., Paajanen T., Zhang Y., et al. AddNeuroMed Consortium. Analysis of regional MRI volumes and thicknesses as predictors of conversion from mild cognitive impairment to Alzheimer’s disease. Neurobiol. Aging. 2010;31(8):1375–1385. doi: 10.1016/j.neurobiolaging.2010.01.022. PubMed DOI

Vemuri P., Jack C.R., Jr Role of structural MRI in Alzheimer’s disease. Alzheimers Res. Ther. 2010;2(4):23. doi: 10.1186/alzrt47. PubMed DOI PMC

Mrzílkova J., Koutela A., Kutová M., et al. Hippocampal spatial position evaluation on MRI for research and clinical practice. PLoS One. 2014;9(12):e115174. doi: 10.1371/journal.pone.0115174. PubMed DOI PMC

Ten Kate M., Barkhof F., Boccardi M., et al. Geneva Task Force for the Roadmap of Alzheimer’s Biomarkers. Clinical validity of medial temporal atrophy as a biomarker for Alzheimer’s disease in the context of a structured 5-phase development framework. Neurobiol. Aging. 2017;52:167–182.e1. doi: 10.1016/j.neurobiolaging.2016.05.024. PubMed DOI

Bartos A., Gregus D., Ibrahim I., Tintěra J. Brain volumes and their ratios in Alzheimer’s disease on magnetic resonance imaging segmented using Freesurfer 6.0. Psychiatry Res. Neuroimaging. 2019;287:70–74. doi: 10.1016/j.pscychresns.2019.01.014. PubMed DOI

Ishii K., Kawachi T., Sasaki H., et al. Voxel-based morphometric comparison between early- and late-onset mild Alzheimer’s disease and assessment of diagnostic performance of z score images. AJNR Am. J. Neuroradiol. 2005;26(2):333–340. PubMed PMC

Frisoni G.B., Pievani M., Testa C., et al. The topography of grey matter involvement in early and late onset Alzheimer’s disease. Brain. 2007;130(Pt 3):720–730. doi: 10.1093/brain/awl377. PubMed DOI

Shiino A., Watanabe T., Kitagawa T., et al. Different atrophic patterns in early- and late-onset Alzheimer’s disease and evaluation of clinical utility of a method of regional z-score analysis using voxel-based morphometry. Dement. Geriatr. Cogn. Disord. 2008;26(2):175–186. doi: 10.1159/000151241. PubMed DOI

Lehmann M., Koedam E.L., Barnes J., et al. Posterior cerebral atrophy in the absence of medial temporal lobe atrophy in pathologically-confirmed Alzheimer’s disease. Neurobiol. Aging. 2012;33(3):627.e1–627.e12. doi: 10.1016/j.neurobiolaging.2011.04.003. PubMed DOI PMC

Mrzilková J., Zach P., Bartoš A., Tintěra J., Řípová D. Volumetric analysis of the pons, cerebellum and hippocampi in patients with Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2012;34(3-4):224–234. doi: 10.1159/000343445. PubMed DOI

Rathakrishnan B.G., Doraiswamy P.M., Petrella J.R. Science to practice: Translating automated brain MRI volumetry in Alzheimer’s disease from research to routine diagnostic use in the work-up of dementia. Front. Neurol. 2014;4:216. doi: 10.3389/fneur.2013.00216. PubMed DOI PMC

Mulder E.R., de Jong R.A., Knol D.L., et al. Alzheimer’s Disease Neuroimaging Initiative. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. Neuroimage. 2014;92:169–181. doi: 10.1016/j.neuroimage.2014.01.058. PubMed DOI

Cover K.S., van Schijndel R.A., Versteeg A., et al. Alzheimer’s Disease Neuroimaging Initiative, neuGRID. Reproducibility of hippocampal atrophy rates measured with manual, FreeSurfer, AdaBoost, FSL/FIRST and the MAPS-HBSI methods in Alzheimer’s disease. Psychiatry Res. Neuroimaging. 2016;252:26–35. doi: 10.1016/j.pscychresns.2016.04.006. PubMed DOI

Harper L., Barkhof F., Fox N.C., Schott J.M. Using visual rating to diagnose dementia: A critical evaluation of MRI atrophy scales. J. Neurol. Neurosurg. Psychiatry. 2015;86(11):1225–1233. doi: 10.1136/jnnp-2014-310090. PubMed DOI

Harper L., Fumagalli G.G., Barkhof F., et al. MRI visual rating scales in the diagnosis of dementia: Evaluation in 184 post-mortem confirmed cases. Brain. 2016;139(Pt 4):1211–1225. doi: 10.1093/brain/aww005. PubMed DOI PMC

Rhodius-Meester H.F.M., Benedictus M.R., Wattjes M.P., et al. MRI visual ratings of brain atrophy and white matter hyperintensities across the spectrum of cognitive decline are differently affected by age and diagnosis. Front. Aging Neurosci. 2017;9:117. doi: 10.3389/fnagi.2017.00117. PubMed DOI PMC

Landis J.R., Koch G.G. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–174. doi: 10.2307/2529310. PubMed DOI

Král J., Jonszta T., Marcian V., Tomaskova H., Bar M. Congruence in evaluating early ischemic changes using the ASPECT score between the neurologist and the interventional neuroradiologist in patients with acute cerebral ischemia. Cesk Slov Neurol N. 2018;81/114:304–307. doi: 10.14735/amcsnn2018304. DOI

Koedam E.L., Lehmann M., van der Flier W.M., et al. Visual assessment of posterior atrophy development of a MRI rating scale. Eur. Radiol. 2011;21(12):2618–2625. doi: 10.1007/s00330-011-2205-4. PubMed DOI PMC

Silhan D., Ibrahim I., Tintera J., Bartos A. Parietal atrophy score on magnetic resonance imaging of the brain in normally aging people. Cesk Slov Neurol N. 2018;81(4):414–419. doi: 10.14735/amcsnn2018414. DOI

Silhan D., Ibrahim I., Tintera J., Bartos A. Magnetic resonance imaging showing parietal atrophy of the brain in late-onset Alzheimer’s disease. Cesk Slov Neurol N. 2019;82(1):91–95. doi: 10.14735/amcsnn201991. DOI

Kuchtova B., Wurst Z., Mrzilkova J., et al. Compensatory shift of subcallosal area and paraterminal gyrus white matter parameters on DTI in patients with Alzheimer disease. Curr. Alzheimer Res. 2018;15(6):590–599. doi: 10.2174/1567205015666171227155510. PubMed DOI

Ibrahim I., Horacek J., Bartos A., et al. Combination of voxel based morphometry and diffusion tensor imaging in patients with Alzheimer’s disease. Neuroendocrinol. Lett. 2009;30(1):39–45. PubMed

Scheltens P., Launer L.J., Barkhof F., Weinstein H.C., van Gool W.A. Visual assessment of medial temporal lobe atrophy on magnetic resonance imaging: Interobserver reliability. J. Neurol. 1995;242(9):557–560. doi: 10.1007/BF00868807. PubMed DOI

Bujang M.A., Baharum N. Guidelines of the minimum sample size requirements for Cohen’s Kappa. Epidemiol. Biostat. Public Health. 2017;14(2)

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...