Nejvíce citovaný článek - PubMed ID 29355372
M(4) muscarinic receptors and locomotor activity regulation
Muscarinic receptors (mAChRs) are typical members of the G protein-coupled receptor (GPCR) family and exist in five subtypes from M1 to M5. Muscarinic receptor subtypes do not sufficiently differ in affinity to orthosteric antagonists or agonists; therefore, the analysis of receptor subtypes is complicated, and misinterpretations can occur. Usually, when researchers mainly specialized in CNS and peripheral functions aim to study mAChR involvement in behavior, learning, spinal locomotor networks, biological rhythms, cardiovascular physiology, bronchoconstriction, gastrointestinal tract functions, schizophrenia, and Parkinson's disease, they use orthosteric ligands and they do not use allosteric ligands. Moreover, they usually rely on manufacturers' claims that could be misleading. This review aimed to call the attention of researchers not deeply focused on mAChR pharmacology to this fact. Importantly, limited selective binding is not only a property of mAChRs but is a general attribute of most neurotransmitter receptors. In this review, we want to give an overview of the most common off-targets for established mAChR ligands. In this context, an important point is a mention the tremendous knowledge gap on off-targets for novel compounds compared to very well-established ligands. Therefore, we will summarize reported affinities and give an outline of strategies to investigate the subtype's function, thereby avoiding ambiguous results. Despite that, the multitargeting nature of drugs acting also on mAChR could be an advantage when treating such diseases as schizophrenia. Antipsychotics are a perfect example of a multitargeting advantage in treatment. A promising strategy is the use of allosteric ligands, although some of these ligands have also been shown to exhibit limited selectivity. Another new direction in the development of muscarinic selective ligands is functionally selective and biased agonists. The possible selective ligands, usually allosteric, will also be listed. To overcome the limited selectivity of orthosteric ligands, the recommended process is to carefully examine the presence of respective subtypes in specific tissues via knockout studies, carefully apply "specific" agonists/antagonists at appropriate concentrations and then calculate the probability of a specific subtype involvement in specific functions. This could help interested researchers aiming to study the central nervous system functions mediated by the muscarinic receptor.
- Klíčová slova
- allosteric, multitarget, muscarinic agonist, muscarinic antagonist, muscarinic receptors, orthosteric,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Social species form organizations that support individuals because the consequent social behaviors help these organisms survive. The isolation of these individuals may be a stressor. We reviewed the potential mechanisms of the effects of social isolation on cholinergic signaling and vice versa how changes in cholinergic signaling affect changes due to social isolation.There are two important problems regarding this topic. First, isolation schemes differ in their duration (1-165 days) and initiation (immediately after birth to adulthood). Second, there is an important problem that is generally not considered when studying the role of the cholinergic system in neurobehavioral correlates: muscarinic and nicotinic receptor subtypes do not differ sufficiently in their affinity for orthosteric site agonists and antagonists. Some potential cholinesterase inhibitors also affect other targets, such as receptors or other neurotransmitter systems. Therefore, the role of the cholinergic system in social isolation should be carefully considered, and multiple receptor systems may be involved in the central nervous system response, although some subtypes are involved in specific functions. To determine the role of a specific receptor subtype, the presence of a specific subtype in the central nervous system should be determined using search in knockout studies with the careful application of specific agonists/antagonists.
- Klíčová slova
- cholinergic signaling, interactome, muscarinic receptors, nicotinic receptors, social isolation, social stress,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tight interactions exist between dopamine and acetylcholine signaling in the striatum. Dopaminergic neurons express muscarinic and nicotinic receptors, and cholinergic interneurons express dopamine receptors. All neurons in the striatum are pacemakers. An increase in dopamine release is activated by stopping acetylcholine release. The coordinated timing or synchrony of the direct and indirect pathways is critical for refined movements. Changes in neurotransmitter ratios are considered a prominent factor in Parkinson's disease. In general, drugs increase striatal dopamine release, and others can potentiate both dopamine and acetylcholine release. Both neurotransmitters and their receptors show diurnal variations. Recently, it was observed that reward function is modulated by the circadian system, and behavioral changes (hyperactivity and hypoactivity during the light and dark phases, respectively) are present in an animal model of Parkinson's disease. The striatum is one of the key structures responsible for increased locomotion in the active (dark) period in mice lacking M4 muscarinic receptors. Thus, we propose here a hierarchical model of the interaction between dopamine and acetylcholine signaling systems in the striatum. The basis of this model is their functional morphology. The next highest mode of interaction between these two neurotransmitter systems is their interaction at the neurotransmitter/receptor/signaling level. Furthermore, these interactions contribute to locomotor activity regulation and reward behavior, and the topmost level of interaction represents their biological rhythmicity.
- Klíčová slova
- addiction, biological rhythm, dopamine receptors, locomotor activity, muscarinic receptors, striatum,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVES: M4 muscarinic receptors (MR) presumably play a role in motor coordination. Previous studies have shown different results depending on genetic background and number of backcrosses. However, no attention has been given to biorhythms. MATERIAL AND METHODS: We therefore analyzed biorhythms under a light/dark cycle obtained telemetrically in intact animals (activity, body temperature) in M4 KO mice growth on the C57Bl6 background using ChronosFit software. Studying pure effects of gene knockout in daily rhythms is especially important knowledge for pharmacological/behavioral studies in which drugs are usually tested in the morning. RESULTS: We show that M4 KO mice motor activity does not differ substantially from wild-type mice during light period while in the dark phase (mice active part of the day), the M4 KO mice reveal biorhythm changes in many parameters. Moreover, these differences are sex-dependent and are evident in females only. Mesor, night-day difference, and night value were doubled or tripled when comparing female KO versus male KO. Our in vitro autoradiography demonstrates that M4 MR proportion represents 24% in the motor cortex (MOCx), 30% in the somatosensory cortex, 50% in the striatum, 69% in the thalamus, and 48% in the intergeniculate leaflet (IGL). The M4 MR densities were negligible in the subparaventricular zone, the posterior hypothalamic area, and in the suprachiasmatic nuclei. CONCLUSIONS: We conclude that cholinergic signaling at M4 MR in brain structures such as striatum, MOCx, and probably with the important participation of IGL significantly control motor activity biorhythm. Animal activity differs in the light and dark phases, which should be taken into consideration when interpreting the results.
- Klíčová slova
- M4 muscarinic receptor, biorhythm, intergeniculate leaflet, motor activity, motor cortex, sex differences, striatum, suprachiasmatic nuclei, temperature, thalamus,
- MeSH
- chování zvířat fyziologie MeSH
- modely u zvířat MeSH
- mozek fyziologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- periodicita * MeSH
- pohybová aktivita genetika fyziologie MeSH
- receptor muskarinový M4 nedostatek genetika MeSH
- sexuální faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- receptor muskarinový M4 MeSH