Most cited article - PubMed ID 29506307
Effect of Muscular Strength, Asymmetries and Fatigue on Kicking Performance in Soccer Players
In light of previous research highlighting the prevalence of asymmetries in soccer players and possible links to injury risks, there is a crucial gap in the biomechanical understanding of complex relationships between lower extremity and trunk asymmetries in elite soccer players. The purpose of this study was to investigate the level, relationships, and differences among twelve different parameters of strength, morphological, and neuromuscular asymmetries in elite soccer players. Methods: Elite male soccer players (n = 25, age 21.7 ± 3.9 years) were tested in the following tests: bilateral fluid distribution, hip flexor range of motion, postural stability, isokinetic strength of knee extensors and flexors, isometric lateral trunk rotation strength, eccentric strength of knee flexors, isometric bilateral strength of hip adductors, and vertical ground reaction force in counter-movement jump-free arms, counter-movement jump, squat jump, and drop jump tests. One-way ANOVA, Pearson's coefficient (r), and partial eta squared (η p 2) were used for data analysis. Results: Significant differences in asymmetries were found in elite soccer players (F11,299 = 11.01, p < .01). The magnitude of asymmetry over 10% was in postural stability and drop jump parameters. The lowest magnitudes of asymmetries were in the fluid distribution of the lower limbs and the vertical ground reaction force during the take-off phase in squat jumps. The highest asymmetries between the dominant and non-dominant sides were found in postural stability and drop jump. A total of eleven significant correlations (p < 0.05, r = 0.41-0.63, R2 = 0.17-0.40) were detected between the analyzed asymmetries in elite soccer players. The lateral trunk rotation asymmetries were significantly correlated to vertical ground reaction force asymmetries and knee extensors. Conclusion: Long-term exposure in elite soccer leads to unilateral biomechanical loading that induces abnormal strength and morphological adaptations in favor of the dominant side while linking lower limb and trunk strength asymmetries. By unraveling these complex relationships, we strive to contribute novel methods that could inform targeted training regimens and injury prevention strategies in the elite soccer community. The data should encourage future researchers and coaches to monitor and develop trunk strength linked to lower body kinematics.
- Keywords
- football, injury prevention, isokinetic, isometric, performance, power, strength,
- Publication type
- Journal Article MeSH
External workloads associated Hockey 5 s, the new version of youth field hockey, were evaluated in 31 elite U16 male field players (15.4 ± 0.7 years) from three national teams. Mixed-longitudinal observations for the 31 players provided complete data for 33 forwards and 43 defenders. Activities of the players during games were monitored with the GPSports SPI Elite System with a sampling frequency of 10 Hz and were analysed with GPSports Team AMS (version R1 2015.14, Australia). Observed variables did not differ between forwards and defenders, and the three periods of play were differentiated only by maximal speed in the second and third periods. The greatest distances covered were in speed zone 3 (10.0-15.9 km h-1; 35.5-38.2%) and the smallest in speed zones 4 (16.0-22.9 km h-1; 14.8-15.6%) and 5 (> 23 km h-1; 0.4-1.4%). The trends indicated high intensity levels for the entire match and by position and periods. Active time of forwards and defenders accounted for about one-half of a game's duration (~ 15.7 of 30 min). Overall, the Hockey 5s format was highly demanding of players and included relatively short intervals for recovery. The results emphasize the need for preparation that includes specific mixed anaerobic and aerobic training and also the importance of recovery during breaks.
- MeSH
- Running * MeSH
- Geographic Information Systems MeSH
- Hockey * MeSH
- Humans MeSH
- Adolescent MeSH
- Workload MeSH
- Athletic Performance * MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
Body composition (BC) and inter-limb anthropometric asymmetries (LA) may influence the physical performance of soccer players. This study aimed to determine differences in BC and LA among soccer across four performance levels. The study involved 110 male soccer players participating in Czech senior teams who were grouped into four different performance levels (i.e. G1: national team, G2: 1st division, G3: 2nd division, G4: 3rd division). The following BC and LA parameters were compared among groups: body height, body mass, absolute fat-free mass, relative fat-free mass (FFMrel), percentage of fat mass (FM), total body water (TBW), intracellular water (ICW), extracellular water (ECW), phase angle, and bilateral muscle mass differences in the upper and lower extremities. Significant differences were observed in BC parameters among all groups (λ = 0.06, F75,246 = 5.38, p = 0.01, ηp 2 = 0.62). High-performance players (i.e. G1, G2) had significantly (p < 0.01) lower FM than lower performance players (i.e. G3, G4). The lowest values of FFMrel, relative TBW, relative ICW and ECW were detected in the lowest-performance players (i.e. G4). Significantly lower bilateral muscle mass differences were detected in G1 players (2.71 ± 1.26%; p < 0.01) compared with G4 players (3.95 ± 1.17%). G1 and G2 players had a higher proportion of muscle mass in the torso (p < 0.01) and upper limbs than G3 and G4 (p < 0.01). Elite and high-performance players have better BC and lower inter-limb anthropometric asymmetries compared with low-performance level players.
- Keywords
- Elite sport, Fat mass, Fat-free mass, Physical performance, Soccer,
- Publication type
- Journal Article MeSH
The purpose of our study was to investigate peak torque (PT) of knee extensors (KE) and knee flexors (KF), bilateral and unilateral strength asymmetries in isokinetic testing and vertical jump height (JH), vertical ground reaction force (VGRF), and force differences (ΔVGRF) between legs during different jump tests in professional first-line firefighters (n = 15) competing in fire sports disciplines. There was a significant effect of jump type on JH (F2,44 = 7.23, p < 0.05), VGRF (F2,44 = 16.03, p < 0.05), and ΔVGRF (F2,44 = 3.45, p < 0.05). Professional firefighters achieved a mean JH of 50.17 cm in the countermovement jump free arms and high PT of KEs (3.15 Nm/kg). No significant differences (p > 0.05) and small effect sizes (d < 0.3) were found between the legs when PTs were assessed. We found a slightly higher (d = 0.53) unilateral strength ratio in non-dominant legs (58.12 ± 10.26%) compared to dominant legs (55.31 ± 7.51%). No effect of laterality was found among limb comparisons, but a higher unilateral isokinetic strength ratio was found in non-dominant legs of firefighters. A high level of strength (PT of KEs > 3 times body weight) and vertical jump performance is comparable to the performance of elite athletic populations.
- Keywords
- asymmetries, fire sport, performance, tactical population,
- MeSH
- Biomechanical Phenomena MeSH
- Firefighters * MeSH
- Knee MeSH
- Humans MeSH
- Sports * MeSH
- Muscle Strength MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Background and objective: Type of physical activity may influence morphological and muscular asymmetries in the young population. However, less is known about the size of this effect when comparing various sports. The aim of this study was to identify the degree of bilateral asymmetry (BA) and the level of unilateral ratio (UR) between isokinetic strength of knee extensors (KE) and flexors (KF) among athletes of three different types of predominant locomotion in various sports (symmetric, asymmetric and hybrid). Material and methods: The analyzed group consisted of young elite athletes (n = 50). The maximum peak muscle torque of the KE and KF in both the dominant (DL) and non-dominant (NL) lower limb during concentric muscle contraction at an angular velocity of 60°·s-1 was measured with an isokinetic dynamometer. Results: Data analysis showed a significant effect of the main factor (the type of sport) on the level of monitored variables (p = 0.004). The type of sport revealed a significant difference in the bilateral ratio (p = 0.01). The group of symmetric and hybrid sports achieved lower values (p = 0.01) of BA in their lower limb muscles than those who played asymmetric sports. The hybrid sports group achieved higher UR values (p = 0.01) in both lower limbs. Conclusions: The results indicate that sports with predominantly symmetrical, asymmetrical, and hybrid types of locomotion affected the size of the BA, as well as the UR between KE and KF in both legs in young athletes. We recommend paying attention to regular KE and KF strength diagnostics in young athletes and optimizing individual compensatory exercises if a higher ratio of strength asymmetry is discovered.
- Keywords
- isokinetic peak torque, lower limbs, maladaptation, muscular symmetry, soccer, youth,
- MeSH
- Knee MeSH
- Muscle, Skeletal MeSH
- Humans MeSH
- Athletes MeSH
- Sports * MeSH
- Muscle Strength * MeSH
- Torque MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The aim of this study was to explore the effects of simulated soccer match play on neuromuscular performance in adolescent players longitudinally over a two-year period. Eleven players completed all measurements in both years of the study (1st year: age 16.0 ± 0.4 y; stature 178.8 ± 6.4 cm; mass 67.5 ± 7.8 kg; maturity-offset 2.24 ± 0.71 y). There was a significant reduction in hamstring strength after simulated match by the soccer-specific aerobic field test (SAFT90), with four out of eight parameters compromised in U16s (4.7-7.8% decrease) and six in the U17s (3.1-15.4%). In the U17s all of the concentric quadriceps strength parameters were decreased (3.7-8.6%) as well as the vastus lateralis and semitendinosus firing frequency (26.9-35.4%). In both ages leg stiffness decreased (9.2-10.2%) and reactive strength increased pre to post simulated match (U16 8.0%; U17 2.5%). A comparison of changes between age groups did not show any differences. This study demonstrates a decrease in neuromuscular performance post simulated match play in both ages but observed changes were not age dependent.
- Keywords
- EMG, isokinetic, leg stiffness, reactive strength, simulated match-play,
- MeSH
- Lower Extremity * physiology MeSH
- Soccer * MeSH
- Muscle, Skeletal * physiology MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Adolescent MeSH
- Muscle Strength * physiology MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The aim of this study was to identify and compare parameters related to anthropometry, body composition (BC), and morphological asymmetry in elite soccer players in nine age categories at the same soccer club (n = 355). We used a bio-impedance analyzer to measure the following indicators of BC: body height (BH); body mass (BM); relative fat-free mass (FFMr); percentage of fat mass (FM); and bilateral muscle mass differences in the lower extremities (BLD∆). Age showed a significant influence on all parameters observed (F64,1962 = 9.99, p = 0.00, λ = 14.75, η2p = 0.25). Adolescent players (from U16 through adults) had lower FM values (<10%) compared to players in the U12-U15 categories (>10%). The highest FFMr was observed in the U18 category. Players in the U12 and U13 categories showed more homogenous values compared to older players. With increasing age, significantly higher FFMr was observed in the lower extremities. An inter-limb comparison of the lower extremities showed significant differences in the U17 category (t27 = 2.77, p = 0.01) and in adult players (t68 = 5.02, p = 0.00). Our results suggest that the end of height growth occurs around the age of 16 years, while weight continues to increase until 20 years. This increase is not linked to decreasing FM, nor to the FFMr, which remains stable. We found morphological asymmetries between limbs in players of the U17 category and in adult players.
- Keywords
- elite athletes, fat mass, fat-free mass, morphological asymmetry, ontogenesis, talent,
- MeSH
- Anthropometry MeSH
- Leg * anatomy & histology MeSH
- Adult MeSH
- Soccer * MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Prospective Studies MeSH
- Body Composition * MeSH
- Athletic Performance * MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The purpose of this study was to investigate the morphological and isokinetic strength asymmetry and magnitude in young athletes. METHODS: One hundred and thirty nine male subjects (soccer, floorball, non-athletes) were measured for proportion of muscle mass between upper extremities (BADΔ) and lower extremities (BLDΔ). Moreover, the peak muscle torque of knee extensors (PTE) and flexors (PTF), ipsilateral (H:Q) and bilateral strength ratio (Q:Q, H:H) were measured. RESULTS: We found significant differences in observed parameters with respect to different sport activities (F = 13.02, p = 0.00, η p 2 = 0.80). Higher values of BADΔ were observed in the non-active (0.19 ± 0.11 kg) group compared with soccer players (0.10 ± 0.11 kg). We found a lower value of BLDΔ in floorball players (0.32 ± 0.11 kg) compared with soccer players (0.58 ± 0.27 kg) and non-active boys (0.63 ± 0.28 kg). Results revealed significantly higher PTE in soccer players compared with non-active boys and floorball players and higher Q:Q ratio in soccer players (10.99 ± 7.75%) compared with non-active boys (7.47 ± 5.92%). CONCLUSIONS: This study revealed that there are morphological and strength asymmetries in the observed groups, which may have potential maladaptive effects (e.g. uncompensated overload of extremity) in athletes affected by specific load.
- Keywords
- Body composition, Fitness performance, Isokinetic testing, Maladaptation,
- Publication type
- Journal Article MeSH
The aim of this study was to determine whether the speed, agility, aerobic and anaerobic capacities of football players varied by playing positions. Elite youth football players (n = 123, age = 15.7 ± 0.5 years) who played in six different positions, as goalkeepers (GK), full backs (FB), central defenders (CD), wide midfielders (WM), central midfielders (CM), and attackers (AT), were assessed. Multivariate analysis of variances was used to compare the following variables: Linear running sprint for 5 m (S5) and 10 m (S10), flying sprint for 20 m (F20), agility 505 test with turn on the dominant (A505D) and non-dominant leg (A505N), agility K-test, Yo-Yo intermittent recovery (YYIR1) test and repeat sprint ability (RSA) test. The results showed significant influence of playing positions on linear-running sprint performance (F1,123 = 6.19, p < 0.01, ηp² = 0.23). Midfielders reached significantly higher performance levels (CM = 2.44 ± 0.08 s, WM = 2.47 ± 0.13 s) in the A505N test compared to GK (2.61 ± 0.23 s). Outfield players had significantly higher performance in both YYIR1 and RSA tests compared to GK (p < 0.01). The results of this study may provide insightful strategies for coaches and clinical practitioners for developing position-specific conditioning programs.
- Keywords
- GPS, agility, elite sport, endurance, match analysis, performance demands, testing and diagnostic,
- Publication type
- Journal Article MeSH
OBJECTIVE: The unique foot morphology and distinctive functions facilitate complex tasks and strategies such as standing, walking, and running. In those weight-bearing activities, postural stability (PS) plays an important role. Correlations among foot type, PS, and other musculoskeletal problems that increase sport injury risk are known. However, long-term associations among the foot type, the PS, and body weight (BW) distribution are lacking. Thus, the purpose of this study was to longitudinally identify changes in foot morphology, PS, and symmetry in BW distribution during adolescence among elite male soccer players. METHODS: Thirty-five Czech elite male soccer players (age, 15.49 ± 0.61 years; BW, 64.11 ± 6.16 kg; body height, 174.62 ± 5.71 cm) underwent foot type, PS, and BW distribution measurements during 3 consecutive years (T1, T2, T3). The Chippaux-Smirak index (CSI), BW distribution, and centre of pressure (COP) displacement (total traveled way [TTW]) of each player for the preferred (PL) and non-preferred leg (NL) were acquired. Repeated-measures analysis of variance (RM ANOVA), Bonferroni´s post hoc tests, and partial eta-squared (ηp2) coefficient were used for investigating the effect of time on selected variables and effect size evaluation. RESULTS: Statistically significant effect of time on CSI values (PL: F2,68 = 5.08, p < 0.01, ηp2 = 0.13 and NL: F2,68 = 10.87, p < 0.01, ηp2 = 0.24) and COP displacement values (PL: F2,68 = 5.07, p <0.01, ηp2 = 0.13; NL: F2,68 = 3.53, p <0.05, ηp2 = 0.09) for both legs over 3-years period was identified. Furthermore, the Bonferroni´s post hoc analysis revealed a significant improvement of PS values in the PL (TTWT1 = 1617.11 ± 520.22 mm vs. TTWT2 = 1405.29 ± 462.76, p < 0.05; and between TTWT1 = 1617.11 ± 520.22 mm vs. TTWT3 = 1370.46 ± 373.94, p < 0.05). Only BW distribution parameter showed no significant differences, although slightly improved over time. CONCLUSIONS: We observed changes in foot typology, PS, and BW distribution in young elite male soccer players during 3 consecutive years. Results demonstrated that changes in PS and body weight distribution under the high-load sport conditions during adolescence may improve with aging, except for foot morphology. Therefore, foot morphology should be carefully monitored to minimize sport injury risk in professional young soccer players during adolescence. Further research is necessary to determine more clear associations between these parameters, soccer-related injuries, and sport performances.
- MeSH
- Biomechanical Phenomena MeSH
- Soccer injuries physiology MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Adolescent MeSH
- Foot anatomy & histology physiology MeSH
- Flatfoot pathology physiopathology MeSH
- Postural Balance physiology MeSH
- Somatotypes physiology MeSH
- Body Weight physiology MeSH
- Check Tag
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH