reactive strength Dotaz Zobrazit nápovědu
The paper presents the test results of basalt fiber impact on a compressive and flexural strength, resistance to abrasion and porosity of Reactive Powder Concrete (RPC). The reasons for testing were interesting mechanical properties of basalt fibers, the significant tensile strength and flexural strength, and in particular the resistance to high temperatures, as well as a relatively small number of RPC tests performed with those fibers and different opinions regarding the impact of those fibers on concrete strength. The composition of the concrete mix was optimized to obtain the highest packing density of particles in the composite, based on the optimum particle size distribution curve acc. to Funk. Admixture of basalt fibers was used in quantity 2, 3, 6, 8 and 10 kg/m3, length 12 mm and diameter 18 µm. A low water-to-binder ratio, i.e., from 0.24, was obtained through application of a polycarboxylate-based superplasticizer. The introduction of up to 10 kg/m3 of basalt fibers to RPC mix was proved to be possible, while keeping the same w/c ratio equal to 0.24, with a slight loss of workability of the concrete mix as the content of fibers increased. It was found that the increase of the fiber content in RPC to 10 kg/m3, despite the w/c ratio was kept the same, caused reduction of the concrete compressive strength by 18.2%, 7.8% and 13.6%, after 2, 7, and 28 days respectively. Whereas, the flexural strength of RPC increased gradually (maximum by 15.9%), along with the fiber quantity increase up to 6 kg/m3, and then it reduced (maximum by 17.7%), as the fiber content in the concrete was further increased. The reduction of RPC compressive strength, along with the increase in basalt fibers content, leads to the increase of the total porosity, as well as the change in pore volume distribution. The reduction of RPC abrasion resistance was demonstrated along with the increase of basalt fibers content, which was explained by the compressive strength reduction of that concrete. A linear relation between the RPC abrasion resistance and the compressive strength involves a high determination coefficient equal to 0.97.
- Klíčová slova
- abrasion, basalt fibers, porosity, reactive powder concrete, strength,
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to identify potential gender differences in leg stiffness and reactive strength during hopping tasks in 13 to16-year old team sports players. Reactive strength index (RSI) and leg stiffness were obtained in two consecutive seasons from 51 girls (U14: n = 31, U16: n = 20) and 65 boys (U14: n = 32, U16: n = 33). A significant main effect on absolute (U14: p = 0.022, η2= 0.084; U16: p < 0.001, η2= 0.224) and relative leg stiffness (U14 p<0.001; η2= 0.195; U16; p = 0.008, η2= 0.128) for gender was found in both groups with values higher in boys than in girls. For absolute and relative stiffness gender differences in the U14 group were significant in the 1st year only (p=0.027 and p=0.001), and for the U16s in the 2nd year only (p < 0.001 and p = 0.022). For RSI, a significant main effect for gender was observed in the U16 group only (p < 0.001 η2= 0.429) with values significantly higher in boys than in girls in both years of measurement (p = 0.001; p < 0.001). Results of this study support previous limited findings, mostly related to non-athletes, suggesting lower stretch-shortening cycle capability in adolescence female compared to male, however our data only partly supports the theory that quality of neuromuscular functions increases with age until post puberty.
- Klíčová slova
- neuromuscular, reactive strength index, stretch-shortening cycle, youth,
- Publikační typ
- časopisecké články MeSH
The profound effects of reactive elements (REs) on the adhesion energy and adhesive strength of the α-Al2O3/β-NiAl interface in thermal barrier coating (TBC) systems have attracted increasing attention because RE-doping has played a significant role in improving the thermal cycling lifetime of TBCs. However, the fundamental mechanism is, so far, not well understood due to the experimental difficulty and theoretical complexity in interface modelling. For this purpose, in the present study we have performed comprehensive density functional theory calculations and information targeted experiments to underline the origin of the surprising enhancement of interface adhesion, stability and mechanical strength of the α-Al2O3/β-NiAl interface by different RE doping levels. Our results suggest that the interface failure firstly appears within the NiAl layer adjacent to the Al-terminated oxide under mechanical loading, while the formation of O-RE-Ni bond pairs at the interface can effectively hinder the interface de-cohesion, providing a higher mechanical strength. By comparing several typical REs, it is observed that Hf can emerge not only with the highest interface adhesion energy, but also the highest mechanical strength; in agreement with our experimental results. By continuously increasing the dopant concentration, the strengthening effect may increase correspondingly, but is limited by the solute solubility. These results shed light into the effect of REs on the stability and strength of the α-Al2O3/β-NiAl interface, providing theoretical guidance for interface design via a combinational analysis of bond topology and electronic structure.
- Publikační typ
- časopisecké články MeSH
To investigate and compare the reliability of reactive strength index-modified (RSImod) and its associated variables (jump height [JH] and [time to take-off]) 20 combat fighters and 18 physically active men participated in this study. They visited the laboratory three times; firstly, for jump familiarization and two sessions for test-retest (2-7 days apart). For both groups, the between-day changes in performance were trivial to small (≤ 1.1%). The coefficient of variation (CV) comparisons (i.e. CV ratio) demonstrated that combat athletes had a lower test-retest variation for RSImod (0.87) and JH (0.80) than non-athletes. Combat athletes demonstrated a greater JH than physically active men (0.43 vs 0.37; p = 0.03, g = 0.73), but small and non-significant differences were observed for RSImod (0.60 vs 0.55; p = 0.24, g = 0.38) and TTT (0.70 vs 0.72; p = 0.32, g = 0.33). RSImod was more positively correlated with JH (r = 0.75-0.87; p < 0.001) than negatively correlated with TTT (r = 0.45-0.54; p < 0.001). This study suggests that RSImod is a reliable variable obtained during CMJ testing in combat athletes and physically active men, with scores being slightly better for combat athletes. In terms of performance, combat athletes jumped higher than physically active men, but no differences in RSImod or TTT were observed. Lastly, RSImod was more strongly related to JH than TTT, and this was more evident in athletes than nonathletes. This indicates that the combat athletes were able to better utilize their (equal) time spent jumping (higher), possibly via greater utilization of the stretch shortening cycle, faster or more optimal motor unit recruitment, or an array of other factors.
- Klíčová slova
- Combat fighters, Countermovement jump, Jump performance, Stretch-shortening cycle, Test-retest reliability,
- Publikační typ
- časopisecké články MeSH
The purpose of the study was to analyse the changes in muscle strength, power, and somatic parameters in elite volleyball players after a specific pre-season training programme aimed at improving jumping and strength performance and injury prevention. Twelve junior female volleyball players participated in an 8-week training programme. Anthropometric characteristics, isokinetic peak torque (PT) single-joint knee flexion (H) and extension (Q) at 60º/s and 180º/s, counter movement jump (CMJ), squat jump (SJ), and reactive strength index (RSI) were measured before and after intervention. Significant moderate effects were found in flexor concentric PT at 60º/s and at 180 º/s in the dominant leg (DL) (18.3±15.1%, likely; 17.8±11.2%, very likely) and in extensor concentric PT at 180º/s (7.4%±7.8%, very likely) in the DL. In the non-dominant leg (NL) significant moderate effects were found in flexor concentric PT at 60º/s and at 180º/s (13.7±11.3%, likely; 13.4±8.0%, very likely) and in extensor concentric PT at 180º/s (10.7±11.5%, very likely). Small to moderate changes were observed for H/QCONV in the DL at 60º/s and 180º/s (15.9±14.1%; 9.6±10.4%, both likely) and in the NL at 60º/s (moderate change, 9.6±11.8%, likely), and small to moderate decreases were detected for H/QFUNC at 180º/s, in both the DL and NL (-7.0±8.3%, likely; -9.5±10.0%, likely). Training-induced changes in jumping performance were trivial (for RSI) to small (for CMJ and SJ). The applied pre-season training programme induced a number of positive changes in physical performance and risk of injury, despite a lack of changes in body mass and composition.
- Klíčová slova
- Body composition, Fitness, H/Q ratios, Isokinetics, Magnitude based inference, Reactive strength index, Training,
- Publikační typ
- časopisecké články MeSH
The study explores the effect of elevated temperatures on the bond strength between prestressing reinforcement and ultra-high performance concrete (UHPC). Laboratory investigations reveal that the changes in bond strength correspond well with the changes in compressive strength of UHPC and their correlation can be mathematically described. Exposition of specimens to temperatures up to 200 °C does not reduce bond strength as a negative effect of increasing temperature is outweighed by the positive effect of thermal increase on the reactivity of silica fume in UHPC mixture. Above 200 °C, bond strength significantly reduces; for instance, a decrease by about 70% is observed at 800 °C. The decreases in compressive and bond strengths for temperatures above 400 °C are related to the changes of phase composition of UHPC matrix (as revealed by X-ray powder diffraction) and the changes in microstructure including the increase of porosity (verified by mercury intrusion porosimetry and observation of confocal microscopy) and development cracks detected by scanning electron microscopy. Future research should investigate the effect of relaxation of prestressing reinforcement with increasing temperature on bond strength reduction by numerical modelling.
- Klíčová slova
- bond strength, brass coated fiber, elevated temperature, pore size distribution, prestressing reinforcement, ultra-high performance concrete (UHPC),
- Publikační typ
- časopisecké články MeSH
The rationalization of material flows, together with the utilization of waste raw materials for the production of alternative binders, became a very attractive topic during the last decades. However, the majority of designed materials can be used as a replacement for low-performance products. In this work, the waste materials (brick powder and blast furnace slag) are valorized through geopolymerization to design high-performance material as an alternative to high-performance concrete. Designed mixtures activated by sodium silicate and waste-originated alkali solution are characterized by the meaning of the chemical and mineralogical composition, evolution of hydration heat, and mechanical strength test. To contribute to the understanding of the environmental consequences and potential benefits, the carbon footprint and embodied energy analysis are provided. Obtained results highlight the potential of end-of-life bricks for the design of high-performance composites if mixed together with more reactive precursors. Here, even values over 60 MPa in compressive strength can be achieved with the dominant share of low-amorphous brick powder. The higher crystalline portion of brick powder may lead to the reduction of drying shrinkage and preservation of flexural strength to a greater extent compared to used slag. Performed environmental analysis confirmed the CO2 emission savings; however, the embodied energy analysis revealed a huge impact of using alkaline activators.
- Klíčová slova
- alkali activation, blast furnace slag, brick powder, environmental footprint, geopolymer, mechanical strength,
- Publikační typ
- časopisecké články MeSH
Lipid peroxidation induced by oxidants leads to the formation of highly reactive metabolites. These can affect various immune functions, including reactive oxygen species (ROS) and nitric oxide (NO) production. The aim of the present study was to investigate the effects of lipid peroxidation products (LPPs) - acrolein, 4-hydroxynonenal, and malondialdehyde - on ROS and NO production in RAW 264.7 macrophages and to compare these effects with the cytotoxic properties of LPPs. Macrophages were stimulated with lipopolysaccharide (0.1 μg/ml) and treated with selected LPPs (concentration range: 0.1-100 μM). ATP test, luminol-enhanced chemiluminescence, Griess reaction, Western blotting analysis, amperometric and total peroxyl radical-trapping antioxidant parameter assay were used for determining the LPPs cytotoxicity, ROS and NO production, inducible nitric oxide synthase expression, NO scavenging, and antioxidant properties of LPPs, respectively. Our study shows that the cytotoxic action of acrolein and 4-hydroxynonenal works in a dose- and time-dependent manner. Further, our results imply that acrolein, 4-hydroxynonenal, and malondialdehyde can inhibit, to a different degree, ROS and NO production in stimulated macrophages, partially independently of their toxic effect. Also, changes in enzymatic pathways (especially NADPH-oxidase and nitric oxide synthase inhibition) and NO scavenging properties are included in the downregulation of reactive species formation.
- MeSH
- akrolein toxicita MeSH
- aktivace makrofágů MeSH
- aldehydy toxicita MeSH
- časové faktory MeSH
- down regulace účinky léků MeSH
- dusitany metabolismus MeSH
- lipopolysacharidy imunologie MeSH
- makrofágy imunologie metabolismus MeSH
- malondialdehyd toxicita MeSH
- myši MeSH
- NADPH-oxidasy antagonisté a inhibitory MeSH
- osmolární koncentrace MeSH
- oxid dusnatý antagonisté a inhibitory metabolismus MeSH
- peroxidace lipidů * MeSH
- reaktivní formy kyslíku antagonisté a inhibitory metabolismus MeSH
- scavengery volných radikálů farmakologie MeSH
- synthasa oxidu dusnatého, typ II metabolismus MeSH
- transformované buněčné linie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- 4-hydroxy-2-nonenal MeSH Prohlížeč
- akrolein MeSH
- aldehydy MeSH
- dusitany MeSH
- lipopolysacharidy MeSH
- malondialdehyd MeSH
- NADPH-oxidasy MeSH
- Nos2 protein, mouse MeSH Prohlížeč
- oxid dusnatý MeSH
- reaktivní formy kyslíku MeSH
- scavengery volných radikálů MeSH
- synthasa oxidu dusnatého, typ II MeSH
This paper deals with the optimization of reactive powder concrete mixtures with respect to the addition of silica fume and the type of polycarboxylate superplasticizer used. First, the properties of reactive powder concrete with eight different commercial polycarboxylate superplasticizers were tested in terms of workability, specific weight, and mechanical properties. It was found that different commercially available superplasticizers had significant effects on the slump flow, specific weight, and compressive and flexural strengths. The optimal superplasticizer (BASF ACE430) was selected for further experiments in order to evaluate the influences of silica fume and superplasticizer content on the same material properties. The results showed that the silica fume and superplasticizer content had considerable effects on the mini-cone slump flow value, specific weight, flexural and compressive strengths, and microstructure. There were clearly visible trends and local minima and maxima of the measured properties. The optimal reactive powder concrete mixture had a composition of 3.5-4.0% superplasticizer and 15-25% silica fume.
- Klíčová slova
- microstructure, pozzolanic reaction, reactive powder concrete, silica fume, superplasticizer, ultra-high-performance concrete,
- Publikační typ
- časopisecké články MeSH
CONTEXT: Obesity is characterized by a low-grade inflammatory state, which could play a role in insulin resistance. Dynamic strength training improves insulin sensitivity. OBJECTIVE: The objective of this study was to investigate, in obese subjects, whether the insulin sensitizing effect of dynamic strength training is associated with changes in plasma levels and gene expression of adipokines potentially involved in the development of insulin resistance. DESIGN: Twelve obese male subjects were investigated before and at the end of 3 months of dynamic strength training. Insulin sensitivity was evaluated using euglycemic-hyperinsulinemic clamp. Blood samples and needle biopsy samples of sc abdominal adipose tissue were obtained. The plasma levels and adipose tissue mRNA levels of adiponectin, leptin, IL-1beta, IL-6, and TNF-alpha were determined. RESULTS: The training induced an increase in the whole-body glucose disposal rate by 24% (P = 0.04). The body weight was not altered during the training. Plasma levels of leptin decreased during the training (16.6 +/- 6.3 vs. 13.1 +/- 5.7 ng/ml) by 21% (P < 0.02), whereas no change in plasma levels of other adipokines and C-reactive protein was observed. Gene expression of the investigated adipokines was not changed in sc adipose tissue during the training. CONCLUSIONS: In obese subjects, the dynamic strength training resulted in an improvement of whole-body insulin sensitivity. The increase in insulin sensitivity was not associated with training-induced modifications of plasma levels or adipose tissue gene expression of adipokines supposedly involved in the development of insulin resistance.
- MeSH
- adiponektin krev metabolismus MeSH
- cvičení fyziologie MeSH
- cytokiny krev metabolismus MeSH
- exprese genu MeSH
- interleukin-1beta krev metabolismus MeSH
- interleukin-6 krev metabolismus MeSH
- inzulinová rezistence fyziologie MeSH
- leptin krev metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- obezita krev metabolismus MeSH
- podkožní tuk metabolismus MeSH
- svalová síla fyziologie MeSH
- TNF-alfa krev metabolismus MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adiponektin MeSH
- ADIPOQ protein, human MeSH Prohlížeč
- cytokiny MeSH
- interleukin-1beta MeSH
- interleukin-6 MeSH
- leptin MeSH
- TNF-alfa MeSH