Most cited article - PubMed ID 29530647
Diversity of Entamoeba spp. in African great apes and humans: an insight from Illumina MiSeq high-throughput sequencing
Rapid increases in human populations and environmental changes of past decades have led to changes in rates of contact and spatial overlap with wildlife. Together with other historical, social and environmental processes, this has significantly contributed to pathogen transmission in both directions, especially between humans and non-human primates, whose close phylogenetic relationship facilitates cross-infections. Using high-throughput amplicon sequencing, we studied strongylid communities in sympatric western lowland gorillas, central chimpanzees and humans co-occurring in an unprotected area in the northern periphery of the Dja Faunal Reserve, Cameroon. At the genus level, we classified 65 strongylid ITS-2 amplicon sequencing variants (ASVs) in humans and great apes. Great apes exhibited higher strongylid diversity than humans. Necator and Oesophagostomum were the most prevalent genera, and we commonly observed mixed infections of more than one strongylid species. Human strongylid communities were dominated by the human hookworm N. americanus, while great apes were mainly infected with N. gorillae, O. stephanostomum and trichostrongylids. We were also able to detect rare strongylid taxa (such as Ancylostoma and Ternidens). We detected eight ASVs shared between humans and great apes (four N. americanus variants, two N. gorillae variants, one O. stephanostomum type I and one Trichostrongylus sp. type II variant). Our results show that knowledge of strongylid communities in primates, including humans, is still limited. Sharing the same habitat, especially outside protected areas (where access to the forest is not restricted), can enable mutual parasite exchange and can even override host phylogeny or conserved patterns. Such studies are critical for assessing the threats posed to all hosts by increasing human-wildlife spatial overlap. In this study, the term "contact" refers to physical contact, while "spatial overlap" refers to environmental contact.
- MeSH
- Ancylostoma * MeSH
- Animals, Wild MeSH
- Phylogeny MeSH
- Humans MeSH
- Pan troglodytes * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Cameroon epidemiology MeSH
Giardia duodenalis is one of the most common intestinal parasites of humans, with a worldwide distribution. Giardia duodenalis has been reported in both wild and captive populations of non-human primates, namely chimpanzees. In this study we investigated an entire troop of clinically healthy chimpanzees (n = 21) for the presence of G. duodenalis and its association with faecal microbiota profile. Faecal samples (n = 26) were collected from the chimpanzee exhibit from a zoo in Sydney, Australia. Diagnosis of G. duodenalis was made using a Rapid Antigen Test (RAT) as a point-of-care-test and compared to a reference standard real-time PCR test. Approximately half of the chimpanzee faecal samples tested positive for G. duodenalis by both RAT (13/26, 50%) and real-time PCR (14/26, 53.85%). The RAT sensitivity was 85.7% (95% CI: 63.8%-96%) and specificity was 91.7% (95% CI: 68.3%-99%) when compared to the in-house real-time PCR. Genotyping of the samples revealed the presence of zoonotic assemblage B. Microscopic analysis revealed the presence of Troglodytella spp. (14/26), Balantioides sp. (syn. Balantidium sp.) (8/26) as well as Entamoeba spp. (3/26). Microbiota profile based on 16S rRNA gene sequencing revealed that the community was significantly different between G. duodenalis positive and negative samples if RAT results were taken into an account, but not real-time PCR diagnostics results. Proteobacteria and Chloroflexi were the significant features in the dataset that separated G. duodenalis positive and negative samples using LEfSe analysis. Being able to rapidly test for G. duodenalis in captive populations of primates assists in point-of-care diagnostics and may better identify animals with subclinical disease. Under the investigated conditions of the zoo setting, however, presence of G. duodenalis either detected by RAT or real-time PCR was not associated with clinically apparent disease in captive chimpanzees.
- Keywords
- Commensal, Diagnostics, Giardiasis, Microbiome, Parasite, Zoo animals, Zoonosis,
- Publication type
- Journal Article MeSH
BACKGROUND: Zoonotic diseases are a serious threat to both public health and animal conservation. Most non-human primates (NHP) are facing the threat of forest loss and fragmentation and are increasingly living in closer spatial proximity to humans. Humans are infected with soil-transmitted helminths (STH) at a high prevalence, and bidirectional infection with NHP has been observed. The aim of this study was to determine the prevalence, genetic diversity, distribution and presence of co-infections of STH in free-ranging gorillas, chimpanzees and other NHP species, and to determine the potential role of these NHP as reservoir hosts contributing to the environmental sustenance of zoonotic nematode infections in forested areas of Cameroon and Gabon. METHODS: A total of 315 faecal samples from six species of NHPs were analysed. We performed PCR amplification, sequencing and maximum likelihood analysis of DNA fragments of the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA to detect the presence and determine the genetic diversity of Oesophagostomum spp., Necator spp. and Trichuris spp., and of targeted DNA fragments of the internal transcribed spacer 1 (ITS1) to detect the presence of Ascaris spp. RESULTS: Necator spp. infections were most common in gorillas (35 of 65 individuals), but also present in chimpanzees (100 of 222 individuals) and in one of four samples from greater spot-nosed monkeys. These clustered with previously described type II and III Necator spp. Gorillas were also the most infected NHP with Oesophagostomum (51/65 individuals), followed by chimpanzees (157/222 individuals), mandrills (8/12 samples) and mangabeys (7/12 samples), with O. stephanostomum being the most prevalent species. Oesophagostomum bifurcum was detected in chimpanzees and a red-capped mangabey, and a non-classified Oesophagostomum species was detected in a mandrill and a red-capped mangabey. In addition, Ternidens deminutus was detected in samples from one chimpanzee and three greater spot-nosed monkeys. A significant relative overabundance of co-infections with Necator and Oesophagostomum was observed in chimpanzees and gorillas. Trichuris sp. was detected at low prevalence in a gorilla, a chimpanzee and a greater spot-nosed monkey. No Ascaris was observed in any of the samples analysed. CONCLUSIONS: Our results on STH prevalence and genetic diversity in NHP from Cameroon and Gabon corroborate those obtained from other wild NHP populations in other African countries. Future research should focus on better identifying, at a molecular level, the species of Necator and Oesophagostomum infecting NHP and determining how human populations may be affected by increased proximity resulting from encroachment into sylvatic STH reservoir habitats.
- Keywords
- Africa, Faeces, Non-human primate, Phylogeny, Soil-transmitted helminths, Zoonosis,
- MeSH
- Helminths classification genetics isolation & purification MeSH
- Animals, Wild parasitology MeSH
- DNA, Helminth genetics MeSH
- Feces parasitology MeSH
- Helminthiasis, Animal epidemiology transmission MeSH
- Primates classification parasitology MeSH
- Soil parasitology MeSH
- Zoonoses epidemiology parasitology transmission MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Gabon epidemiology MeSH
- Cameroon epidemiology MeSH
- Names of Substances
- DNA, Helminth MeSH
- Soil MeSH
Emerging infectious diseases are frequently zoonotic, often originating in wildlife, but enteric protozoa are considered relatively minor contributors. Opinions regarding whether pathogenic enteric protozoa may be transmitted between wildlife and humans have been shaped by our investigation tools, and have led to oscillations regarding whether particular species are zoonotic or have host-adapted life cycles. When the only approach for identifying enteric protozoa was morphology, it was assumed that many enteric protozoa colonized multiple hosts and were probably zoonotic. When molecular tools revealed genetic differences in morphologically identical species colonizing humans and other animals, host specificity seemed more likely. Parasites from animals found to be genetically identical - at the few genes investigated - to morphologically indistinguishable parasites from human hosts, were described as having zoonotic potential. More discriminatory molecular tools have now sub-divided some protozoa again. Meanwhile, some infection events indicate that, circumstances permitting, some "host-specific" protozoa, can actually infect various hosts. These repeated changes in our understanding are linked intrinsically to the investigative tools available. Here we review how molecular tools have assisted, or sometimes confused, our understanding of the public health threat from nine enteric protozoa and example wildlife hosts (Balantoides coli - wild boar; Blastocystis sp. - wild rodents; Cryptosporidium spp. - wild fish; Encephalitozoon spp. - wild birds; Entamoeba spp. - non-human primates; Enterocytozoon bieneusi - wild cervids; Giardia duodenalis - red foxes; Sarcocystis nesbitti - snakes; Toxoplasma gondii - bobcats). Molecular tools have provided evidence that some enteric protozoa in wildlife may infect humans, but due to limited discriminatory power, often only the zoonotic potential of the parasite is indicated. Molecular analyses, which should be as discriminatory as possible, are one, but not the only, component of the toolbox for investigating potential public health impacts from pathogenic enteric protozoa in wildlife.
- Keywords
- Emerging infection, Host specificity, Protozoa, Transmission, Wildlife, Zoonosis,
- Publication type
- Journal Article MeSH
- Review MeSH
Relationships between gastrointestinal parasites (GIPs) and the gastrointestinal microbiome (GIM) are widely discussed topics across mammalian species due to their possible impact on the host's health. GIPs may change the environment determining alterations in GIM composition. We evaluated the associations between GIP infections and fecal microbiome composition in two habituated and two unhabituated groups of wild western lowland gorillas (Gorilla g. gorilla) from Dzanga Sangha Protected Areas, Central African Republic. We examined 43 fecal samples for GIPs and quantified strongylid nematodes. We characterized fecal microbiome composition through 454 pyrosequencing of the V1-V3 region of the bacterial 16S rRNA gene. Entamoeba spp. infections were associated with significant differences in abundances of bacterial taxa that likely play important roles in nutrition and metabolism for the host, besides being characteristic members of the gorilla gut microbiome. We did not observe any relationships between relative abundances of several bacterial taxa and strongylid egg counts. Based on our findings, we suggest that there is a significant relationship between fecal microbiome and Entamoeba infection in wild gorillas. This study contributes to the overall knowledge about factors involved in modulating GIM communities in great apes.
- Keywords
- Entamoeba, bacteria, fecal microbiome, lowland gorilla, parasite infection, strongylid nematodes,
- Publication type
- Journal Article MeSH