Nejvíce citovaný článek - PubMed ID 29663650
Content of distinct metals in periprosthetic tissues and pseudosynovial joint fluid in patients with total joint arthroplasty
Magnetic nanoparticles have been at the center of biomedical research for decades, primarily for their applications in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). Superparamagnetic particles, typically based on iron oxide crystals, are effective in both modalities, although each requires distinct magnetic properties for optimal performance. We investigated the performance of nanoparticles based on a nickel-substituted ferrite core and compared them to standard maghemite iron oxide nanoparticles. We synthesized γ-Fe2O3 and Ni x Fe2-x O3 nanoparticles and coated them with a statistical copolymer poly-(N,N-dimethylacrylamide-co-acrylic acid). In vitro testing included X-ray diffraction (XRD), Mössbauer spectroscopy, magnetometry, magnetic resonance relaxometry, magnetic particle spectroscopy, and imaging. In vivo testing involved monitoring of nanoparticle biodistribution using MPI and MRI after intracardial application in a murine model. Mössbauer spectra suggest that the Ni-substituted nanoparticles consist of a stoichiometric NiFe2O4 ferrite and a poorly crystalline antiferromagnetic iron-(III) oxide-hydroxide phase. Amorphous-like impurities in Ni x Fe2-x O3 nanoparticles were probably responsible for lower saturation magnetization than that of γ-Fe2O3 nanoparticles, as was proved by magnetometry, which led to lower r 2 relaxivity. However, MPI revealed a higher signal in the spectrum and superior imaging performance of Ni x Fe2-x O3 compared to γ-Fe2O3 particles, likely due to shorter Néél and Brownian relaxation times. Both types of nanoparticles showed similar performance in bimodal MRI/MPI imaging in vivo. They were detected in the liver immediately after application and appeared in the spleen within 24 h. Long-term localization in the lymph nodes was also observed. Substituting an iron with a nickel ion in the core altered the magnetic properties, leading to lower saturation magnetization and an increased signal in the magnetic particle spectra, which enhanced their performance in MPI. This study demonstrates that γ-Fe2O3 and Ni x Fe2-x O3 nanoparticles are both suitable for combined MRI/MPI imaging; magnetic particle imaging provides a highly specific signal for anatomical magnetic resonance images.
- Klíčová slova
- magnetic particle imaging, magnetic resonance imaging, nickel ferrite nanoparticles, r2 relaxivity, saturation magnetization,
- Publikační typ
- časopisecké články MeSH
A multimodal approach combining inductively coupled plasma mass spectrometry (ICP-MS), single-particle ICP-MS (spICP-MS), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman spectroscopy enabled a deeper insight into the balance between total titanium (Ti), the soluble titanium fraction and titanium dioxide based particle fraction levels in periprosthetic tissues collected from patients undergoing revision surgery. Hydrofluoric acid usage in the sample digestion allowed for complete digestion of TiO2 particles, thus enabling accurate estimation of total Ti levels. The TiO2 fraction represents 38-94% of the titanium load in the six samples where particles were detected, and the fraction is present mainly in samples from patients with aseptically loosened total hip arthroplasty. Further attention was given to this fraction determining the elemental composition, particle count, particle size and modification of TiO2. The spICP-MS analysis confirmed the presence of the TiO2-derived (nano)particles (NPs) with a 39- to 187-nm median size and particle count up to 2.3 × 1011 particles per gram of tissue. On top of that, the SEM-EDS confirmed the presence of the TiO2 nanoparticles with 230-nm median size and an anatase crystal phase was determined by Raman spectroscopy. This study presents a novel multimodal approach for TiO2 particle determination and characterization in tissue samples and is the first in vivo study of this character.
- Klíčová slova
- Fractionation, Inductively coupled plasma mass spectrometry, Raman spectroscopy, Scanning electron microscopy, Tissue samples, Titanium nanoparticles,
- MeSH
- hmotnostní spektrometrie metody MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- náhrada kyčelního kloubu MeSH
- nanočástice chemie MeSH
- Ramanova spektroskopie * metody MeSH
- spektrometrie rentgenová emisní metody MeSH
- titan * chemie analýza MeSH
- velikost částic MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- titan * MeSH
- titanium dioxide MeSH Prohlížeč
The histopathological examination of the periprosthetic soft tissue and bone has contributed to the identification and description of the morphological features of adverse local tissue reactions (ALTR)/adverse reactions to metallic debris (ARMD). The need of a uniform vocabulary for all disciplines involved in the diagnosis and management of ALTR/ARMD and of clarification of the parameters used in the semi-quantitative scoring systems for their classification has been considered a pre-requisite for a meaningful interdisciplinary evaluation.This review of key terms used for ALTR/ARMD has resulted in the following outcomes: (a) pseudotumor is a descriptive term for ALTR/ARMD, classifiable in two main types according to its cellular composition defining its clinical course; (b) the substitution of the term metallosis with presence of metallic wear debris, since it cannot be used as a category of implant failure or histological diagnosis; (c) the term aseptic lymphocytic-dominated vasculitis- associated lesion (ALVAL) should be replaced due to the absence of a vasculitis with ALLTR/ALRMD for lymphocytic-predominant and AMLTR/AMRMD for macrophage-predominant reaction.This review of the histopathological classifications of ALTR/ARMD has resulted in the following outcomes: (a) distinction between cell death and tissue necrosis; (b) the association of corrosion metallic debris with adverse local lymphocytic reaction and tissue necrosis; (c) the importance of cell and particle debris for the viscosity and density of the lubricating synovial fluid; (d) a consensus classification of lymphocytic infiltrate in soft tissue and bone marrow; (e) evaluation of the macrophage infiltrate in soft tissues and bone marrow; (f) classification of macrophage induced osteolysis/aseptic loosening as a delayed type of ALTR/ARMD; (g) macrophage motility and migration as possible driving factor for osteolysis; (h) usefulness of the histopathological examination for the natural history of the adverse reactions, radiological correlation, post-marketing surveillance, and implant registries.The review of key terms used for the description and histopathological classification of ALTR/ARMD has resulted in a comprehensive, new standard for all disciplines involved in their diagnosis, clinical management, and long-term clinical follow-up. Cite this article: EFORT Open Rev 2021;6:399-419. DOI: 10.1302/2058-5241.6.210013.