Most cited article - PubMed ID 29733879
Bioinformatics analyses and in vitro evidence for five and six stacked G-quadruplex forming sequences
Epigenetics deals with changes in gene expression that are not caused by modifications in the primary sequence of nucleic acids. These changes beyond primary structures of nucleic acids not only include DNA/RNA methylation, but also other reversible conversions, together with histone modifications or RNA interference. In addition, under particular conditions (such as specific ion concentrations or protein-induced stabilization), the right-handed double-stranded DNA helix (B-DNA) can form noncanonical structures commonly described as "non-B DNA" structures. These structures comprise, for example, cruciforms, i-motifs, triplexes, and G-quadruplexes. Their formation often leads to significant differences in replication and transcription rates. Noncanonical RNA structures have also been documented to play important roles in translation regulation and the biology of noncoding RNAs. In human and animal studies, the frequency and dynamics of noncanonical DNA and RNA structures are intensively investigated, especially in the field of cancer research and neurodegenerative diseases. In contrast, noncanonical DNA and RNA structures in plants have been on the fringes of interest for a long time and only a few studies deal with their formation, regulation, and physiological importance for plant stress responses. Herein, we present a review focused on the main fields of epigenetics in plants and their possible roles in stress responses and signaling, with special attention dedicated to noncanonical DNA and RNA structures.
- Keywords
- Acetylation, Chromatin, Epigenetics, G-quadruplex, Gene expression, Histone, Methylation, Non-B DNA, Stress signaling,
- MeSH
- DNA genetics chemistry MeSH
- Epigenesis, Genetic MeSH
- G-Quadruplexes * MeSH
- Humans MeSH
- Nucleic Acids * MeSH
- RNA genetics chemistry MeSH
- Plants genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Nucleic Acids * MeSH
- RNA MeSH
Sequences of nucleic acids with the potential to form four-stranded G-quadruplex structures are intensively studied mainly in the context of human diseases, pathogens, or extremophile organisms; nonetheless, the knowledge about their occurrence and putative role in plants is still limited. This work is focused on G-quadruplex-forming sites in two gene sets of interest: drought stress-responsive genes, and genes related to the production/biosynthesis of phenolic compounds in the model plant organism Arabidopsis thaliana. In addition, 20 housekeeping genes were analyzed as well, where the constitutive gene expression was expected (with no need for precise regulation depending on internal or external factors). The results have shown that none of the tested gene sets differed significantly in the content of G-quadruplex-forming sites, however, the highest frequency of G-quadruplex-forming sites was found in the 5'-UTR regions of phenolic compounds' biosynthesis genes, which indicates the possibility of their regulation at the mRNA level. In addition, mainly within the introns and 1000 bp flanks downstream gene regions, G-quadruplex-forming sites were highly underrepresented. Finally, cluster analysis allowed us to observe similarities between particular genes in terms of their PQS characteristics. We believe that the original approach used in this study may become useful for further and more comprehensive bioinformatic studies in the field of G-quadruplex genomics.
- Keywords
- Arabidopsis thaliana, G-quadruplex, PQS, drought stress, phenolic compounds,
- Publication type
- Journal Article MeSH
G-quadruplexes (G4s) have been long considered rare and physiologically unimportant in vitro curiosities, but recent methodological advances have proved their presence and functions in vivo. Moreover, in addition to their functional relevance in bacteria and animals, including humans, their importance has been recently demonstrated in evolutionarily distinct plant species. In this study, we analyzed the genome of Pisum sativum (garden pea, or the so-called green pea), a unique member of the Fabaceae family. Our results showed that this genome contained putative G4 sequences (PQSs). Interestingly, these PQSs were located nonrandomly in the nuclear genome. We also found PQSs in mitochondrial (mt) and chloroplast (cp) DNA, and we experimentally confirmed G4 formation for sequences found in these two organelles. The frequency of PQSs for nuclear DNA was 0.42 PQSs per thousand base pairs (kbp), in the same range as for cpDNA (0.53/kbp), but significantly lower than what was found for mitochondrial DNA (1.58/kbp). In the nuclear genome, PQSs were mainly associated with regulatory regions, including 5'UTRs, and upstream of the rRNA region. In contrast to genomic DNA, PQSs were located around RNA genes in cpDNA and mtDNA. Interestingly, PQSs were also associated with specific transposable elements such as TIR and LTR and around them, pointing to their role in their spreading in nuclear DNA. The nonrandom localization of PQSs uncovered their evolutionary and functional significance in the Pisum sativum genome.
- Keywords
- G-quadruplex, G4 propensity, chloroplast DNA, sequence prediction,
- MeSH
- 5' Untranslated Regions MeSH
- G-Quadruplexes * MeSH
- Genome, Plant MeSH
- Pisum sativum genetics MeSH
- Humans MeSH
- Base Sequence MeSH
- DNA Transposable Elements genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 5' Untranslated Regions MeSH
- DNA Transposable Elements MeSH
G-quadruplexes are four-stranded nucleic acid structures occurring in the genomes of all living organisms and viruses. It is increasingly evident that these structures play important molecular roles; generally, by modulating gene expression and overall genome integrity. For a long period, G-quadruplexes have been studied specifically in the context of human promoters, telomeres, and associated diseases (cancers, neurological disorders). Several of the proteins for binding G-quadruplexes are known, providing promising targets for influencing G-quadruplex-related processes in organisms. Nonetheless, in plants, only a small number of G-quadruplex binding proteins have been described to date. Thus, we aimed to bioinformatically inspect the available protein sequences to find the best protein candidates with the potential to bind G-quadruplexes. Two similar glycine and arginine-rich G-quadruplex-binding motifs were described in humans. The first is the so-called "RGG motif"-RRGDGRRRGGGGRGQGGRGRGGGFKG, and the second (which has been recently described) is known as the "NIQI motif"-RGRGRGRGGGSGGSGGRGRG. Using this general knowledge, we searched for plant proteins containing the above mentioned motifs, using two independent approaches (BLASTp and FIMO scanning), and revealed many proteins containing the G4-binding motif(s). Our research also revealed the core proteins involved in G4 folding and resolving in green plants, algae, and the key plant model organism, Arabidopsis thaliana. The discovered protein candidates were annotated using STRINGdb and sorted by their molecular and physiological roles in simple schemes. Our results point to the significant role of G4-binding proteins in the regulation of gene expression in plants.
- Keywords
- G-quadruplex folding, G-quadruplex resolving, G-quadruplex-binding proteins, NIQI, RGG motif, regulation of gene expression,
- Publication type
- Journal Article MeSH
G-quadruplexes have long been perceived as rare and physiologically unimportant nucleic acid structures. However, several studies have revealed their importance in molecular processes, suggesting their possible role in replication and gene expression regulation. Pathways involving G-quadruplexes are intensively studied, especially in the context of human diseases, while their involvement in gene expression regulation in plants remains largely unexplored. Here, we conducted a bioinformatic study and performed a complex circular dichroism measurement to identify a stable G-quadruplex in the gene RPB1, coding for the RNA polymerase II large subunit. We found that this G-quadruplex-forming locus is highly evolutionarily conserved amongst plants sensu lato (Archaeplastida) that share a common ancestor more than one billion years old. Finally, we discussed a new hypothesis regarding G-quadruplexes interacting with UV light in plants to potentially form an additional layer of the regulatory network.
- Keywords
- UV light, circular dichroism, evolution, nucleic acids, plant science,
- MeSH
- Arabidopsis chemistry genetics radiation effects MeSH
- Circular Dichroism MeSH
- Phylogeny MeSH
- G-Quadruplexes * radiation effects MeSH
- Glaucophyta chemistry genetics radiation effects MeSH
- Evolution, Molecular MeSH
- Gene Expression Regulation, Plant genetics MeSH
- Rhodophyta chemistry genetics radiation effects MeSH
- RNA Polymerase II chemistry genetics MeSH
- Plant Proteins chemistry genetics radiation effects MeSH
- Plants chemistry genetics radiation effects MeSH
- Amino Acid Sequence MeSH
- Sequence Alignment MeSH
- Ultraviolet Rays MeSH
- Computational Biology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA Polymerase II MeSH
- Plant Proteins MeSH
The importance of unusual DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes (G4s) have gained in popularity during the last decade, and their presence and functional relevance at the DNA and RNA level has been demonstrated in a number of viral, bacterial, and eukaryotic genomes, including humans. Here, we performed the first systematic search of G4-forming sequences in all archaeal genomes available in the NCBI database. In this article, we investigate the presence and locations of G-quadruplex forming sequences using the G4Hunter algorithm. G-quadruplex-prone sequences were identified in all archaeal species, with highly significant differences in frequency, from 0.037 to 15.31 potential quadruplex sequences per kb. While G4 forming sequences were extremely abundant in Hadesarchaea archeon (strikingly, more than 50% of the Hadesarchaea archaeon isolate WYZ-LMO6 genome is a potential part of a G4-motif), they were very rare in the Parvarchaeota phylum. The presence of G-quadruplex forming sequences does not follow a random distribution with an over-representation in non-coding RNA, suggesting possible roles for ncRNA regulation. These data illustrate the unique and non-random localization of G-quadruplexes in Archaea.
- Keywords
- Archaea, G4-forming motif, genome analysis, sequence prediction, unusual nucleic acid structures,
- MeSH
- Archaea classification genetics metabolism MeSH
- Archaeal Proteins genetics metabolism MeSH
- Circular Dichroism MeSH
- DNA-Binding Proteins genetics metabolism MeSH
- DNA chemistry genetics metabolism MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- G-Quadruplexes * MeSH
- Genome, Archaeal genetics MeSH
- Genomics methods MeSH
- Nucleic Acid Conformation MeSH
- RNA chemistry genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Archaeal Proteins MeSH
- DNA-Binding Proteins MeSH
- DNA MeSH
- RNA MeSH
The importance of local DNA structures in the regulation of basic cellular processes is an emerging field of research. Amongst local non-B DNA structures, G-quadruplexes are perhaps the most well-characterized to date, and their presence has been demonstrated in many genomes, including that of humans. G-quadruplexes are selectively bound by many regulatory proteins. In this paper, we have analyzed the amino acid composition of all seventy-seven described G-quadruplex binding proteins of Homo sapiens. Our comparison with amino acid frequencies in all human proteins and specific protein subsets (e.g., all nucleic acid binding) revealed unique features of quadruplex binding proteins, with prominent enrichment for glycine (G) and arginine (R). Cluster analysis with bootstrap resampling shows similarities and differences in amino acid composition of particular quadruplex binding proteins. Interestingly, we found that all characterized G-quadruplex binding proteins share a 20 amino acid long motif/domain (RGRGR GRGGG SGGSG GRGRG) which is similar to the previously described RG-rich domain (RRGDG RRRGG GGRGQ GGRGR GGGFKG) of the FRM1 G-quadruplex binding protein. Based on this protein fingerprint, we have predicted a new set of potential G-quadruplex binding proteins sharing this interesting domain rich in glycine and arginine residues.
- Keywords
- RG-rich domain, amino acid composition, protein-DNA interactions, quadruplex binding proteins,
- MeSH
- Amino Acid Motifs MeSH
- DNA-Binding Proteins chemistry metabolism MeSH
- DNA chemistry metabolism MeSH
- G-Quadruplexes MeSH
- Nucleic Acid Conformation MeSH
- Humans MeSH
- Protein Interaction Maps MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA-Binding Proteins MeSH
- DNA MeSH