Most cited article - PubMed ID 29759072
CHAT gene polymorphism rs3810950 is associated with the risk of Alzheimer's disease in the Czech population
The ABCB1 gene, encoding the ATP-dependent translocase ABCB1, plays a crucial role in the clearance of amyloid-beta (Aβ) peptides and the transport of cholesterol, implicating it in the pathogenesis of Alzheimer's disease. The study aims to investigate the association between polymorphisms in the ABCB1 gene and cognitive decline in individuals with mild cognitive impairment (MCI), particularly focusing on language function. A longitudinal cohort study involving 1 005 participants from the Czech Brain Aging Study was conducted. Participants included individuals with Alzheimer's disease, amnestic MCI, non-amnestic MCI, subjective cognitive decline, and healthy controls. Next-generation sequencing was utilized to analyze the entire ABCB1 gene. Cognitive performance was assessed using a comprehensive battery of neuropsychological tests, including the Boston Naming Test and the semantic verbal fluency test. Ten ABCB1 polymorphisms (rs55912869, rs56243536, rs10225473, rs10274587, rs2235040, rs12720067, rs12334183, rs10260862, rs201620488, and rs28718458) were significantly associated with cognitive performance, particularly in language decline among amnestic MCI patients. In silico analyses revealed that some of these polymorphisms may affect the binding sites for transcription factors (HNF-3alpha, C/EBPβ, GR-alpha) and the generation of novel exonic splicing enhancers. Additionally, polymorphism rs55912869 was identified as a potential binding site for the microRNA hsa-mir-3163. Our findings highlight the significant role of ABCB1 polymorphisms in cognitive decline, particularly in language function, among individuals with amnestic MCI. These polymorphisms may influence gene expression and function through interactions with miRNAs, transcription factors, and alternative splicing mechanisms.
- Keywords
- ATP-binding cassette transporters, ATP-dependent translocase, Alzheimer’s disease, DNA polymorphisms, Language decline,
- MeSH
- Alzheimer Disease genetics MeSH
- Polymorphism, Single Nucleotide * MeSH
- Cognitive Dysfunction * genetics MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Neuropsychological Tests MeSH
- ATP Binding Cassette Transporter, Subfamily B genetics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- ABCB1 protein, human MeSH Browser
- ATP Binding Cassette Transporter, Subfamily B MeSH
The risk of Alzheimer's disease (AD) has a strong genetic component, also in the case of late-onset AD (LOAD). Attempts to sequence whole genome in large populations of subjects have identified only a few mutations common to most of the patients with AD. Targeting smaller well-characterized groups of subjects where specific genetic variations in selected genes could be related to precisely defined psychological traits typical of dementia is needed to better understand the heritability of AD. More than one thousand participants, categorized according to cognitive deficits, were assessed using 14 psychometric tests evaluating performance in five cognitive domains (attention/working memory, memory, language, executive functions, visuospatial functions). CD36 was selected as a gene previously shown to be implicated in the etiology of AD. A total of 174 polymorphisms were tested for associations with cognition-related traits and other AD-relevant data using the next generation sequencing. Several associations between single nucleotide polymorphisms (SNP's) and the cognitive deficits have been found (rs12667404 with language performance, rs3211827 and rs41272372 with executive functions, rs137984792 with visuospatial performance). The most prominent association was found between a group of genotypes in six genetically linked and the age at which the AD patients presented with, or developed, a full-blown dementia. The identified alleles appear to be associated with a delay in the onset of LOAD. In silico studies suggested that the SNP's alter the expression of CD36 thus potentially affecting CD36-related neuroinflammation and other molecular and cellular mechanisms known to be involved in the neuronal loss leading to AD. The main outcome of the study is an identification of a set of six new mutations apparently conferring a distinct protection against AD and delaying the onset by about 8 years. Additional mutations in CD36 associated with certain traits characteristic of the cognitive decline in AD have also been found.
- MeSH
- Alzheimer Disease * genetics psychology MeSH
- CD36 Antigens * genetics MeSH
- Executive Function physiology MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Mutation MeSH
- Neuropsychological Tests MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- CD36 Antigens * MeSH
- CD36 protein, human MeSH Browser
Clusterin (CLU; also known as apolipoprotein J, ApoJ) is a protein of inconstant structure known to be involved in diverse processes inside and outside of brain cells. CLU can act as a protein chaperon or protein solubilizer, lipid transporter as well as redox sensor and be anti- or proapoptotic, depending on context. Primary structure of CLU is encoded by CLU gene which contains single nucleotide polymorphisms (SNP's) associated with the risk of late-onset Alzheimer's disease (LOAD). Studying a sample of Czech population and using the case-control association approach we identified C allele of the SNP rs11136000 as conferring a reduced risk of LOAD, more so in females than in males. Additionally, data from two smaller subsets of the population sample suggested a possible association of rs11136000 with diabetes mellitus. In a parallel study, we found no association between rs11136000 and mild cognitive impairment (MCI). Our findings on rs11136000 and LOAD contradict those of some previous studies done elsewhere. We discuss the multiple roles of CLU in a broad range of molecular mechanisms that may contribute to the variability of genetic studies of CLU in various ethnic groups. The above discordance notwithstanding, our conclusions support the association of rs1113600 with the risk of LOAD.
- Keywords
- Clusterin, Genetic risk, Late-onset Alzheimer’s disease, Mild cognitive impairment, Neurodegeneration, Neuroprotection, Single nucleotide polymorphism,
- MeSH
- Alzheimer Disease etiology genetics MeSH
- Genetic Predisposition to Disease MeSH
- Polymorphism, Single Nucleotide MeSH
- Clusterin genetics MeSH
- Cognitive Dysfunction etiology genetics MeSH
- Humans MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- CLU protein, human MeSH Browser
- Clusterin MeSH