Nejvíce citovaný článek - PubMed ID 29867824
Discovery of Phloeophagus Beetles as a Source of Pseudomonas Strains That Produce Potentially New Bioactive Substances and Description of Pseudomonas bohemica sp. nov
BACKGROUND: Ips typographus (European spruce bark beetle) is the most destructive pest of spruce forests in Europe. As for other animals, it has been proposed that the microbiome plays important roles in the biology of bark beetles. About the bacteriome, there still are many uncertainties regarding the taxonomical composition, insect-bacteriome interactions, and their potential roles in the beetle ecology. Here, we aim to deep into the ecological functions and taxonomical composition of I. typographus associated bacteria. RESULTS: We assessed the metabolic potential of a collection of isolates obtained from different life stages of I. typographus beetles. All strains showed the capacity to hydrolyse one or more complex polysaccharides into simpler molecules, which may provide an additional carbon source to its host. Also, 83.9% of the strains isolated showed antagonistic effect against one or more entomopathogenic fungi, which could assist the beetle in its fight against this pathogenic threat. Using culture-dependent and -independent techniques, we present a taxonomical analysis of the bacteriome associated with the I. typographus beetle during its different life stages. We have observed an evolution of its bacteriome, which is diverse at the larval phase, substantially diminished in pupae, greater in the teneral adult phase, and similar to that of the larval stage in mature adults. Our results suggest that taxa belonging to the Erwiniaceae family, and the Pseudoxanthomonas and Pseudomonas genera, as well as an undescribed genus within the Enterobactereaceae family, are part of the core microbiome and may perform vital roles in maintaining beetle fitness. CONCLUSION: Our results indicate that isolates within the bacteriome of I. typographus beetle have the metabolic potential to increase beetle fitness by proving additional and assimilable carbon sources for the beetle, and by antagonizing fungi entomopathogens. Furthermore, we observed that isolates from adult beetles are more likely to have these capacities but those obtained from larvae showed strongest antifungal activity. Our taxonomical analysis showed that Erwinia typographi, Pseudomonas bohemica, and Pseudomonas typographi species along with Pseudoxanthomonas genus, and putative new taxa belonging to the Erwiniaceae and Enterobacterales group are repeatedly present within the bacteriome of I. typographus beetles, indicating that these species might be part of the core microbiome. In addition to Pseudomonas and Erwinia group, Staphylococcus, Acinetobacter, Curtobacterium, Streptomyces, and Bacillus genera seem to also have interesting metabolic capacities but are present in a lower frequency. Future studies involving bacterial-insect interactions or analysing other potential roles would provide more insights into the bacteriome capacity to be beneficial to the beetle.
- Klíčová slova
- Host-microbe interactions, Insect microbiome, Lignocellulolytic enzymes, Microbial ecology, Symbionts,
- Publikační typ
- časopisecké články MeSH
Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria have evolved to occupy a plethora of different ecological niches, including living hosts, such as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their encoded functions remain unknown. Here, we describe a comparative genomic study of 3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains isolated from diverse environments. We detected functional divergence of Pseudomonas that depends on the niche. Each group of strains from a certain environment harbored a distinctive set of metabolic pathways or functions. The horizontal transfer of genes, which mainly proceeded between closely related taxa, was dependent on the isolation source. Finally, we detected thousands of undescribed proteins and functions associated with each Pseudomonas lifestyle. This research represents an effort to reveal the mechanisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will enable clinical, ecological, and biotechnological advances. IMPORTANCE Microbes play important roles in the health of living beings and in the environment. The knowledge of these functions may be useful for the development of new clinical and biotechnological applications and the restoration and preservation of natural ecosystems. However, most mechanisms implicated in the interaction of microbes with the environment remain poorly understood; thus, this field of research is very important. Here, we try to understand the mechanisms that facilitate the differential adaptation of Pseudomonas-a large and ubiquitous bacterial genus-to the environment. We analyzed more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be related with their coevolution with different hosts (animals, plants, or fungi) and environments. Our results revealed that thousands of genes and genetic features are associated with each niche. Our data may be useful to develop new technical and theoretical advances in the fields of ecology, health, and industry.
- Klíčová slova
- Pseudomonas, environmental microbiology, genomics, host-cell interactions, microbial ecology,
- MeSH
- ekosystém * MeSH
- fylogeneze MeSH
- fyziologická adaptace genetika MeSH
- genomika MeSH
- Pseudomonas * genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Symbiosis between microbes and insects has been raised as a promising area for understanding biological implications of microbe-host interactions. Among them, the association between fungi and bark beetles has been generally recognized as essential for the bark beetle ecology. However, many works investigating bark beetle bacterial communities and their functions usually meet in a common finding: Pseudomonas is a broadly represented genus within this holobiont and it may provide beneficial roles to its host. Thus, we aimed to review available research on this microbe-host interaction and point out the probable relevance of Pseudomonas strains for these insects, in order to guide future research toward a deeper analysis of the importance of these bacteria for the beetle's life cycle.
- Klíčová slova
- Dendroctonus, Scolytinae, biocontrol, forest pests, fungal antagonism, host–microbe interaction, insects microbiome, insect–microbe interactions, microbiota, symbionts,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The pine engraver beetle, Ips acuminatus Gyll, is a bark beetle that causes important damages in Scots pine (Pinus sylvestris) forests and plantations. As almost all higher organisms, Ips acuminatus harbours a microbiome, although the role of most members of its microbiome is not well understood. As part of a work in which we analysed the bacterial diversity associated to Ips acuminatus, we isolated the strain Arthrobacter sp. IA7. In order to study its potential role within the bark beetle holobiont, we sequenced and explored its genome and performed a pan-genome analysis of the genus Arthrobacter, showing specific genes of strain IA7 that might be related with its particular role in its niche. Based on these investigations, we suggest several potential roles of the bacterium within the beetle. Analysis of genes related to secondary metabolism indicated potential antifungal capability, confirmed by the inhibition of several entomopathogenic fungal strains (Metarhizium anisopliae CCF0966, Lecanicillium muscarium CCF6041, L. muscarium CCF3297, Isaria fumosorosea CCF4401, I. farinosa CCF4808, Beauveria bassiana CCF4422 and B. brongniartii CCF1547). Phylogenetic analyses of the 16S rRNA gene, six concatenated housekeeping genes (tuf-secY-rpoB-recA-fusA-atpD) and genome sequences indicated that strain IA7 is closely related to A. globiformis NBRC 12137T but forms a new species within the genus Arthrobacter; this was confirmed by digital DNA-DNA hybridization (37.10%) and average nucleotide identity (ANIb) (88.9%). Based on phenotypic and genotypic features, we propose strain IA7T as the novel species Arthrobacter ipsi sp. nov. (type strain IA7T = CECT 30100T = LMG 31782T) and suggest its protective role for its host.
- Klíčová slova
- Allelopathic interactions, Beetle protection, Fungal inhibition, Ips microbiota, Microbiome, Pan-genome analysis,
- MeSH
- antibióza MeSH
- Arthrobacter klasifikace genetika fyziologie MeSH
- bakteriální geny genetika MeSH
- borovice parazitologie MeSH
- brouci mikrobiologie MeSH
- DNA bakterií genetika MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genom bakteriální genetika MeSH
- houby růst a vývoj MeSH
- interakce mikroorganismu a hostitele MeSH
- kůra rostlin parazitologie MeSH
- nemoci rostlin parazitologie MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
European Bark Beetle Ips typographus is a secondary pest that affects dead and weakened spruce trees (Picea genus). Under certain environmental conditions, it has massive outbreaks, resulting in the attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle's microbiome plays a key role in the insect's ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits yet to be discovered. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. A polyphasic taxonomical approach showed that they belong to a new species for which the name Pseudomonas typographi sp nov. is proposed. Genome sequences show their potential to hydrolyze wood compounds and synthesize several vitamins; screening for enzymes production was verified using PNP substrates. Assays in Petri dishes confirmed cellulose and xylan hydrolysis. Moreover, the genomes harbor genes encoding chitinases and gene clusters involved in the synthesis of secondary metabolites with antimicrobial potential. In vitro tests confirmed the capability of the three P. typographi strains to inhibit several Ips beetles' pathogenic fungi. Altogether, these results suggest that P. typographi aids I. typographi nutrition and resistance to fungal pathogens.
- Klíčová slova
- Ips typographus, Pseudomonas, bacteriome, bark beetle, beneficial,
- Publikační typ
- časopisecké články MeSH