Most cited article - PubMed ID 30310239
Non-random extinctions dominate plant community changes in abandoned coppices
QUESTIONS: Did high densities of wild ungulates cause a decline in plant species richness in a temperate oakwood? How did species composition change after nearly five decades? Did ungulates facilitate the spread of ruderal species and supress endangered species? Did dispersal strategies play a role in these processes? LOCATION: Krumlov Wood, SE Czech Republic. METHODS: In 2012, we resampled 58 quasi-permanent vegetation plots first surveyed in 1960s. Between the surveys, 36 plots were enclosed in a game preserve with artificially high density of ungulates (mostly deer, mouflon and wild boar; ca. 55 animals per square km). We analysed the differences in temporal changes between plots inside and outside the game preserve, focusing on species diversity and composition. We assessed species characteristics relevant to grazing to understand compositional changes. RESULTS: Ungulates significantly increased alpha and gamma diversity and caused significant vegetation homogenization inside the game preserve. Vegetation homogenization and the increase in species richness resulted from massive enrichment by ruderal species. However, richness of endangered species decreased. Species dispersed by animals internally (endozoochory) increased, while species dispersed externally (epizoochory) or by wind (anemochory) decreased. CONCLUSIONS: Contrary to our expectations, our long-term data showed that artificially high ungulate densities substantially increased plant species richness. Apparently, the establishment of ruderal herbs was supported by frequent disturbances and ungulate-mediated dispersal. At the same time, species richness of non-ruderal plants did not change, probably because ungulates hindered the regeneration of woody species and maintained an open forest canopy. In conclusion, high ungulate density led to the spread of ruderal species, which in turn strongly contributed to the observed shift towards nutrient-richer conditions and taxonomically more homogenous communities.
- Keywords
- deer, disturbance, game preserve, long-term change, plant-herbivore interactions, semi-permanent plots, species richness, taxonomic homogenization, vegetation resurvey,
- Publication type
- Journal Article MeSH
Understanding the effects of coppicing on forest ecosystems is important for progress towards sustainable forest management. A newly established coppicing experiment in a secondary temperate deciduous forest in the SE Czech Republic provides a rather unique insight into succession driven by canopy thinning in a forest still lacking species typical for forests established since long time ago. Herbaceous layer vegetation was monitored for four subsequent years in 2012-2015. We focused on the influence of canopy thinning intensity in two different forest types defined by dominant tree species (oak and lime). Our results showed that the opening of the canopy had immediate effects on herbaceous vegetation. Coverage, species richness and compositional patterns followed the coppicing intensity gradient. The dominant tree species had contrasting effects. Under oak, the reaction to coppicing was weak. Under lime, strong reaction both related to coppicing intensity and temporal development was observed. Herbs with short life cycle had the greatest contribution, but perennial grasses also began to increase their coverage after coppicing. Several invasive species, mostly short-lived herbs, emerged but are supposed to retreat as the succession will proceed. We conclude that coppice introduction to a secondary forest led to contrasting patterns related to dominant tree species. The marked difference was probably due to the slow sucession towards a future forest community saturated by species. This process may be now further diversified by coppicing management.
- Keywords
- biodiversity, canopy thinning, coppice-with-standards, ecological restoration, herbaceous layer vegetation, secondary forest, temperate forest,
- Publication type
- Journal Article MeSH
Coppice abandonment had negative consequences for biodiversity of forest vegetation and several groups of invertebrates. Most coppicing restoration studies have focused only on a single trophic level despite the fact that ecosystems are characterized by interactions between trophic levels represented by various groups of organisms. To address the patterns of functional diversity in the perspective of coppicing restoration, we studied the short-term effects of conservation-motivated tree canopy thinning in an abandoned coppice-with-standards in Central Europe, a region where such attempts have been rare so far. The functional diversity of vascular plants and spiders, chosen as two model trophic groups within a forest ecosystem, was compared between thinned and control forest patches. To characterize functional patterns, we examined several functional traits. These traits were assigned into two contrasting categories: response traits reflecting a change of environment (for both vascular plants and spiders) and effect traits influencing the ecosystem properties (only for vascular plants). Functional diversity was analysed by CCA using two measures: community-weighted means (CWM) and Rao's quadratic diversity (RaoQ). CCA models revealed that the canopy thinning had a positive effect on diversity of the response traits of both trophic groups and negatively influenced the diversity of effect traits. In addition, we found distinct seasonal dynamics in functional diversity of the spider communities, which was probably linked to leaf phenology of deciduous trees and therefore an effect trait not directly examined in this study. We conclude that canopy thinning affected functional diversity across trophic groups during the initial phase of coppicing restoration. With necessary precautions, careful canopy thinning can be effectively applied in the restoration of functional diversity in abandoned coppices.
- Keywords
- coppice restoration, effect traits, functional diversity, response traits, spiders, trophic groups, vascular plants,
- Publication type
- Journal Article MeSH
More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of, and interactions among, multiple drivers joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this paper we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver-orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid implementation of multi-region resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.
- Keywords
- (quasi-)permanent plots, community ecology, ground layer vegetation, legacy data, temperate forest,
- Publication type
- Journal Article MeSH
BACKGROUND: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanently marked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant error to temporal change. These errors may have major implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. MATERIAL & METHODS: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental-change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarise the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. RESULTS AND CONCLUSIONS: Resampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias, and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) keep a high level of experience of the observers to keep observer bias low; and (v) edit and standardise datasets before analyses.
Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages.
- Keywords
- elevational range shift, realized niche, semipermanent plots, temperate forests, tree life stages, tree ontogeny, vegetation resurvey,
- MeSH
- Time Factors MeSH
- Plant Dispersal * MeSH
- Species Specificity MeSH
- Climate Change * MeSH
- Forests * MeSH
- Altitude MeSH
- Trees growth & development physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Slovakia MeSH
Global biodiversity is affected by numerous environmental drivers. Yet, the extent to which global environmental changes contribute to changes in local diversity is poorly understood. We investigated biodiversity changes in a meta-analysis of 39 resurvey studies in European temperate forests (3988 vegetation records in total, 17-75 years between the two surveys) by assessing the importance of (i) coarse-resolution (i.e., among sites) vs. fine-resolution (i.e., within sites) environmental differences and (ii) changing environmental conditions between surveys. Our results clarify the mechanisms underlying the direction and magnitude of local-scale biodiversity changes. While not detecting any net local diversity loss, we observed considerable among-site variation, partly explained by temporal changes in light availability (a local driver) and density of large herbivores (a regional driver). Furthermore, strong evidence was found that presurvey levels of nitrogen deposition determined subsequent diversity changes. We conclude that models forecasting future biodiversity changes should consider coarse-resolution environmental changes, account for differences in baseline environmental conditions and for local changes in fine-resolution environmental conditions.
- Keywords
- Shannon diversity, atmospheric nitrogen deposition, evenness, forest management, forestREplot, game browsing, spatiotemporal resurvey data, species richness,
- MeSH
- Biodiversity * MeSH
- Herbivory * MeSH
- Time Factors MeSH
- Forestry * MeSH
- Forests * MeSH
- Climate * MeSH
- Air Pollution adverse effects MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
AIM: Resurveys of historical vegetation plots are increasingly used for the assessment of decadal changes in plant species diversity and composition. However, historical plots are usually relocated only approximately. This potentially inflates temporal changes and undermines results. LOCATION: Temperate deciduous forests in Central Europe. METHODS: To explore if robust conclusions can be drawn from resurvey studies despite location uncertainty, we compared temporal changes in species richness, frequency, composition and compositional heterogeneity between exactly and approximately relocated plots. We hypothesized that compositional changes should be lower and changes in species richness should be less variable on exactly relocated plots, because pseudo-turnover inflates temporal changes on approximately relocated plots. RESULTS: Temporal changes in species richness were not more variable and temporal changes in species composition and compositional heterogeneity were not higher on approximately relocated plots. Moreover, the frequency of individual species changed similarly on both plot types. MAIN CONCLUSIONS: The resurvey of historical vegetation plots is robust to uncertainty in original plot location and, when done properly, provides reliable evidence of decadal changes in plant communities. This provides important background for other resurvey studies and opens up the possibility for large-scale assessments of plant community change.
- Keywords
- pseudo-turnover, resampling, revisitation, semi-permanent plots, temperate forest, temporal vegetation change,
- Publication type
- Journal Article MeSH
European broadleaved forests have been influenced by humans for centuries. Historical management practices are related to environmental conditions but the role of socio-economic factors is also important. For the successful restoration of traditional management for conservation purposes, detailed knowledge on management history and on the driving forces of historical forest changes is necessary. In order to reconstruct long-term spatio-temporal dynamics in forest management, we chose the Pálava Protected Landscape Area, Czech Republic and analyzed archival sources spanning the past seven centuries. Forests in the study area comprise two relatively large woods (Děvín and Milovice) with different environmental conditions. Historical forest management in both woods was coppicing. The coppice cycle was lengthened from 7 years (14th century) to more than 30 years (19th century) with a fluctuating density of standards. After WWII, coppicing was completely abandoned. This led to pronounced changes in forest age structure accompanied by stand unification indicated by a sharp decrease in the Shannon index of age diversity. To study local attributes responsible for spatial patterns in coppice abandonment, we constructed a regression model with the date of abandonment as a dependent variable and three groups of explanatory variables: i) remoteness of forest parcels, (ii) morphometric environmental factors and iii) site productivity. In Děvín Wood, coppicing was abandoned gradually with the pattern of abandonment related significantly to slope steepness and forest productivity. Poorly accessible upper slopes and low productive forest sites were abandoned earlier. By contrast, in Milovice Wood, where no clear topographic gradient is present, the abandonment of coppicing was not related to any of the variables we studied. Our study brings insights into the history and consequences of past management practices, and can be used in current attempts to re-establish coppice management for conservation purposes and as a source of sustainable energy.
- Keywords
- GIS, archival sources, conservation, coppicing, forest history, forest management,
- Publication type
- Journal Article MeSH
A substantial part of European lowland woodlands was managed as coppices or wood pastures for millennia. However, traditional management forms were almost completely abandoned in Central Europe by the middle of the 20th century. Combined with the effects of nitrogen deposition and herbivore pressure, shifts in management resulted in biodiversity loss affecting particularly light-demanding oligotrophic plant species. Experimental thinning was applied in a former oak coppice-with-standards in an attempt to restore vanishing understorey plant communities. Two levels of thinning intensity and zero management as control were used on 90 plots. Ten years after the treatment, significant changes in species composition and diversity were observed in heavily thinned plots, while moderate thinning had mostly insignificant effects. Light-demanding oligotrophic species significantly increased, indicating positive consequences of restoration. However, heavy thinning also brought about the expansion of native ruderal species. Alien species remained unchanged. We conclude that the restoration of coppice-with-standards can be an efficient tool to support vanishing light-demanding woodland species. Combined with biodiversity benefits, the increasing demand for biofuel may contribute to the renaissance of traditional management forms in forestry.
- Keywords
- Endangered species, Management, Restoration experiment, Species diversity, Thinning, Traditional woodland, Woodland conservation,
- Publication type
- Journal Article MeSH