Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases. Thousands of soil survey reports and maps have been scanned and made available online. The soil profile data reported by these data sources have been captured and compiled into databases. The total number of soil profiles rescued in the selected countries is about 800,000. Currently, data for 117, 000 profiles are compiled and harmonized according to GlobalSoilMap specifications in a world level database (WoSIS). The results presented at the country level are likely to be an underestimate. The majority of soil data is still not rescued and this effort should be pursued. The data have been used to produce soil property maps. We discuss the pro and cons of top-down and bottom-up approaches to produce such maps and we stress their complementarity. We give examples of success stories. The first global soil property maps using rescued data were produced by a top-down approach and were released at a limited resolution of 1km in 2014, followed by an update at a resolution of 250m in 2017. By the end of 2020, we aim to deliver the first worldwide product that fully meets the GlobalSoilMap specifications.
- Keywords
- GlobalSoilMap, Soil data rescue, legacy data,
- Publication type
- Journal Article MeSH
The current study assesses and predicts cadmium (Cd) concentration in agricultural soil using two Cd datasets, namely legacy data (LD) and preferential sampling-legacy data (PS-LD), along with four streams of auxiliary datasets extracted from Sentinel-2 (S2) and Landsat-8 (L8) bands. The study was divided into two contexts: Cd prediction in agricultural soil using LD, ensemble models, 10 and 20 m spatial resolution of S2 and L8 (context 1), and Cd prediction in agricultural soil using PS-LD, ensemble models and 10 and 20 m spatial resolution of S2 and L8 (context 2). In context 1, ensemble 1, L8 with PS-LD was the cumulative optimal approach that predicted Cd in agricultural soil with a higher R2 value of 0.76, root mean square error (RMSE) of 0.66, mean absolute error (MAE) of 0.35, and median absolute error (MdAE) of 0.13. However, with R2 = 0.78, RMSE = 0.63, MAE = 0.34, and MdAE = 0.15, ensemble 1, S2 of PS-LD was the best prediction approach in predicting Cd concentration in agricultural soil in context 2. Overall, the predictions from both contexts indicated that ensemble 1 of S2 combined with PS-LD was the most appropriate and best model for Cd prediction in agricultural soil. The modeling approaches' uncertainty in both contexts was assessed using ensemble-sequential gaussian simulation (EnSGS), which revealed that the degree of uncertainty propagated in the study area was within 5% in both contexts. The combination of the PS dataset and the LD along with ensemble models and the remote sensing dataset, produced promising results. Nonetheless, the results demonstrated that the 20 m spatial resolution band dataset used in the prediction of Cd in agricultural soil outperformed the 10 m spatial resolution. When PS is combined with LD, an appropriate modeling approach, and a well-correlated remote sensing dataset are used, good results are obtained.
- Keywords
- Ensemble models, Legacy data, Preferential sampling, Remote sensing, Uncertainty assessment,
- MeSH
- Cadmium MeSH
- Soil Pollutants * analysis MeSH
- Environmental Monitoring methods MeSH
- Soil * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- Cadmium MeSH
- Soil Pollutants * MeSH
- Soil * MeSH
Soil solution chemistry depends largely on mineralogy and organic matter properties of soil horizons with which they interact. Differing lithologies within a given catchment area can influence variability in soil cation exchange capacities and affect solute transport. Zero-tension and tension lysimeters were used to evaluate the fast transport of solutes in the topsoil vs. slow diffusional matrix flow at the subsoil of three contrasting lithology catchments in a mid-elevation mountain forest. Our aim was to test the feasibility of lysimeters' hydrochemical data as a gauge for legacy subsoil pollution. Due to contrasting lithologies, atmospheric legacy pollution prevailing at the soil-regolith interface is differently yet consistently reflected by beryllium, lead, and chromium soil solution concentrations of the three catchments. Geochemical (dis)equilibrium between the soil and soil matrix water governed the hydrochemistry of the soil solutions at the time of collection, potentially contributing to decreased dissolved concentrations with increased depths at sites with higher soil pH. A complementary isotopic δ18O runoff generation model constrained potential seasonal responses and pointed to sufficiently long water-regolith interactions as to permit important seasonal contributions of groundwater enriched in chemical species to the topsoil levels. Our study also reflects subsoil equilibration with atmospheric solutes deposited at the topsoil and thus provides guidance for evaluating legacy pollution in soil profiles derived from contrasting lithology.
- Keywords
- Groundwater vs. runoff contribution model, Lysimeters, Metal pollution, Shallow response times and recovery, Stable oxygen isotope, Vadose zone,
- MeSH
- Metals * analysis MeSH
- Water Pollutants analysis MeSH
- Environmental Monitoring * MeSH
- Groundwater * MeSH
- Soil * chemistry MeSH
- Water MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Metals * MeSH
- Water Pollutants MeSH
- Soil * MeSH
- Water MeSH
More and more ecologists have started to resurvey communities sampled in earlier decades to determine long-term shifts in community composition and infer the likely drivers of the ecological changes observed. However, to assess the relative importance of, and interactions among, multiple drivers joint analyses of resurvey data from many regions spanning large environmental gradients are needed. In this paper we illustrate how combining resurvey data from multiple regions can increase the likelihood of driver-orthogonality within the design and show that repeatedly surveying across multiple regions provides higher representativeness and comprehensiveness, allowing us to answer more completely a broader range of questions. We provide general guidelines to aid implementation of multi-region resurvey databases. In so doing, we aim to encourage resurvey database development across other community types and biomes to advance global environmental change research.
- Keywords
- (quasi-)permanent plots, community ecology, ground layer vegetation, legacy data, temperate forest,
- Publication type
- Journal Article MeSH
Knowledge regarding partitioning behavior and bioaccumulation potential of environmental contaminants is important for ecological and human health risk assessment. While a range of models are available to describe bioaccumulation potential of hydrophobic organic chemicals (HOCs) in temperate aquatic food webs, their applicability to tropical systems still needs to be validated. The present study involved field investigations to assess the occurrence, partitioning, and bioaccumulation behavior of several legacy and emerging HOCs in mangrove ecosystems in Singapore. Concentrations of synthetic musk fragrance compounds, methyl triclosan (MTCS), polychlorinated biphenyls, organochlorine pesticides, and polycyclic aromatic hydrocarbons were measured in mangrove sediments, clams, and caged mussels. Freely dissolved concentrations of the HOCs in water were determined using silicone rubber passive samplers. Results showed that polycyclic musks and MTCS are present in mangrove ecosystems and can accumulate in the tissues of mollusks. The generated HOC concentration data for mangrove water, sediments, and biota samples was further utilized to evaluate water-sediment partitioning (e.g., Koc values) and bioaccumulation behavior (e.g., BAF and BSAF values). Overall, the empirical models fit reasonably well with the data obtained for this ecosystem, supporting the concept that general models are applicable to predict the behavior of legacy and emerging HOCs in mangrove ecosystems.
- MeSH
- Water Pollutants, Chemical * MeSH
- Ecosystem MeSH
- Geologic Sediments MeSH
- Environmental Monitoring MeSH
- Organic Chemicals MeSH
- Polychlorinated Biphenyls * MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Water Pollutants, Chemical * MeSH
- Organic Chemicals MeSH
- Polychlorinated Biphenyls * MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
Priority effects provide an advantage to early establishing species and are thought to significantly affect the course of succession. We conducted a 20-year long experiment sowing high- and low-diversity mixtures in an ex-arable field. We ask how long the effect of sowing persists and which sown species affect the course of succession. The experiment was established in the Czech Republic in five replicate blocks, each containing three random 10 × 10 m plots with three treatments: natural colonisation, sowing low- and high-diversity seed mixtures. The species cover was annually estimated in 12 permanent 1 m2 quadrates within each plot. To identify the effects of sowing, we used an innovative method analysing the data separately for each year using Redundancy analysis (RDA) with identity of sown species as explanatory variables. In the first year, the effect of sowing was small; the peak of explained variability occurred between third and fifth year. The legacy of sowing was detectable in the natural colonisers for 18 years and in the sown species for the whole 20-year period. For some species, the difference between the plots where they were and were not sown remained significant for the whole 20-year period (e.g. Lathyrus pratensis) although the plots were adjacent and the area was mown with the same machine. Other ones (e.g. Trisetum flavescens) colonised all the plots evenly. The long-lasting effect of the initial sowing confirms contingency of successional pathway on the propagule pressure in the time of start of succession due to the priority effects.
- Keywords
- Founder effect, Initial composition, Long-term experiment, Old-field succession, Priority effect,
- MeSH
- Poaceae * MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
BACKGROUND: Severe canopy-removing disturbances are native to many temperate forests and radically alter stand structure, but biotic legacies (surviving elements or patterns) can lend continuity to ecosystem function after such events. Poorly understood is the degree to which the structural complexity of an old-growth forest carries over to the next stand. We asked how pre-disturbance spatial pattern acts as a legacy to influence post-disturbance stand structure, and how this legacy influences the structural diversity within the early-seral stand. METHODS: Two stem-mapped one-hectare forest plots in the Czech Republic experienced a severe bark beetle outbreak, thus providing before-and-after data on spatial patterns in live and dead trees, crown projections, down logs, and herb cover. RESULTS: Post-disturbance stands were dominated by an advanced regeneration layer present before the disturbance. Both major species, Norway spruce (Picea abies) and rowan (Sorbus aucuparia), were strongly self-aggregated and also clustered to former canopy trees, pre-disturbance snags, stumps and logs, suggesting positive overstory to understory neighbourhood effects. Thus, although the disturbance dramatically reduced the stand's height profile with ~100% mortality of the canopy layer, the spatial structure of post-disturbance stands still closely reflected the pre-disturbance structure. The former upper tree layer influenced advanced regeneration through microsite and light limitation. Under formerly dense canopies, regeneration density was high but relatively homogeneous in height; while in former small gaps with greater herb cover, regeneration density was lower but with greater heterogeneity in heights. CONCLUSION: These findings suggest that pre-disturbance spatial patterns of forests can persist through severe canopy-removing disturbance, and determine the spatial structure of the succeeding stand. Such patterns constitute a subtle but key legacy effect, promoting structural complexity in early-seral forests as well as variable successional pathways and rates. This influence suggests a continuity in spatial ecosystem structure that may well persist through multiple forest generations.
BACKGROUND: The genomes of present-day non-Africans are composed of 1-3% of Neandertal-derived DNA as a consequence of admixture events between Neandertals and anatomically modern humans about 50-60 thousand years ago. Neandertal-introgressed single nucleotide polymorphisms (aSNPs) have been associated with modern human disease-related traits, which are risk factors for pancreatic ductal adenocarcinoma (PDAC), such as obesity, type 2 diabetes, and inflammation. In this study, we aimed at investigating the role of aSNPs in PDAC in three Eurasian populations. RESULTS: The high-coverage Vindija Neandertal genome was used to select aSNPs in non-African populations from 1000 Genomes project phase 3 data. Then, the association between aSNPs and PDAC risk was tested independently in Europeans and East Asians, using existing GWAS data on more than 200 000 individuals. We did not find any significant associations between aSNPs and PDAC in samples of European descent, whereas, in East Asians, we observed that the Chr10p12.1-rs117585753-T allele (MAF = 10%) increased the risk to develop PDAC (OR = 1.35, 95%CI 1.19-1.54, P = 3.59 × 10-6), with a P-value close to a threshold that takes into account multiple testing. CONCLUSIONS: Our results show only a minimal contribution of Neandertal SNPs to PDAC risk.
- Keywords
- Admixture, Association study, Eurasians, Introgression, Neandertal, Pancreatic cancer,
- MeSH
- Diabetes Mellitus, Type 2 * MeSH
- Carcinoma, Pancreatic Ductal * genetics MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Pancreatic Neoplasms * genetics MeSH
- Neanderthals * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Plant-microbe interactions are of particular importance in polluted soils. This study sought to determine how selected plants (horseradish, black nightshade and tobacco) and NPK mineral fertilization shape the structure of soil microbial communities in legacy contaminated soil and the resultant impact of treatment on the soil microbial community functional potential. To explore these objectives, we combined shotgun metagenomics and 16S rRNA gene amplicon high throughput sequencing with data analysis approaches developed for RNA-seq. We observed that the presence of any of the selected plants rather than fertilization shaped the microbial community structure, and the microbial populations of the root zone of each plant significantly differed from one another and/or from the bulk soil, whereas the effect of the fertilizer proved to be insignificant. When we compared microbial diversity in root zones versus bulk soil, we observed an increase in the relative abundance of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria or Bacteroidetes, taxa which are commonly considered copiotrophic. Our results thus align with the theory that fast-growing, copiotrophic, microorganisms which are adapted to ephemeral carbon inputs are enriched in the vegetated soil. Microbial functional potential indicated that some genetic determinants associated with signal transduction mechanisms, defense mechanisms or amino acid transport and metabolism differed significantly among treatments. Genetic determinants of these categories tend to be overrepresented in copiotrophic organisms. The results of our study further elucidate plant-microbe relationships in a contaminated environment with possible implications for the phyto/rhizoremediation of contaminated areas.
- Keywords
- contaminated soil, fertilization, functional potential, microbial community structure, plants,
- Publication type
- Journal Article MeSH
Melting glaciers are natural redistributors of legacy airborne pollutants, affecting exposure of pristine proglacial environments. Our data shows that melting Himalayan glaciers can be major contributors of polychlorinated biphenyls (PCBs) and high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) for surface water in the Gangetic Plain during the dry season. Glacial emissions can exceed in some cases inputs from diffuse sources within the catchment. We analyzed air, deposition and river water in several sections along the Ganges River and its major headwaters. The predominant glacial origin of these contaminants in the Himalayan reach was demonstrated using air-water fugacity ratios and mass balance analysis. The proportion of meltwater emissions compared to pollutant discharge at downstream sections in the central part of the Gangetic Plain was between 2 and 200%. By remobilizing legacy pollutants from melting glaciers, climate change can enhance exposure levels over large and already heavily impacted regions of Northern India.
- Keywords
- DDT, Glacier, India, PAHs, PCBs,
- MeSH
- Water Pollutants, Chemical analysis MeSH
- Climate Change MeSH
- Air Pollutants analysis MeSH
- Ice Cover chemistry MeSH
- Polychlorinated Biphenyls analysis MeSH
- Polycyclic Aromatic Hydrocarbons analysis MeSH
- Rivers chemistry MeSH
- Seasons MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- India MeSH
- Names of Substances
- Water Pollutants, Chemical MeSH
- Air Pollutants MeSH
- Polychlorinated Biphenyls MeSH
- Polycyclic Aromatic Hydrocarbons MeSH