Nejvíce citovaný článek - PubMed ID 30349002
Light-induced ultrafast dynamics in two-dimensional (2D) magnetic systems demonstrate substantial advancements in spintronics. Here, using the real-time time-dependent density functional theory (rt-TDDFT), we applied laser pulses with various frequencies, from terahertz (THz) to optical pulse, to systematically study the interlayer spin transfer dynamics in 2D van der Waals nonmagnetic-ferromagnetic heterostructures, including graphene-Fe3GeTe2 (Gr/FGT) and silicene-Fe3GeTe2 (Si/FGT). Our results demonstrate that low-frequency THz pulses are particularly effective in facilitating interlayer spin injection from the ferromagnetic FGT layers to the Si or Gr layers. On the contrary, high-frequency optical pulses exhibit a minimal influence on this process. Such an effect is attributed to the low-frequency THz pulses inducing in-phase oscillations of the electron charge density around atomic centers, leading to a highly efficient interlayer spin transfer. Our results provide a new insight into ultrafast THz radiation control intralayer spin transfer and magnetic proximity dynamics in the 2D limit.
- Publikační typ
- časopisecké články MeSH
We employ real-time time-dependent density functional theory (rt-TDDFT) and ab initio nonadiabatic molecular dynamics (NAMD) to systematically investigate the ultrafast laser pulses induced spin transfer and relaxation dynamics of two-dimensional (2D) antiferromagnetic-ferromagnetic (AFM/FM) MnPS3/MnSe2 van der Waals heterostructures. We demonstrate that laser pulses can induce a ferrimagnetic (FiM) state in the AFM MnPS3 layer within tens of femtoseconds and maintain it for subpicosecond time scale before reverting to the AFM state. We identify the mechanism in which the asymmetric optical intersite spin transfer (OISTR) effect occurring within the sublattices of the AFM and FM layers drives the interlayer spin-selective charge transfer, leading to the transition from AFM to FiM state. Furthermore, the unequal electron-phonon coupling of spin-up and spin-down channels of AFM spin sublattice causes an inequivalent spin relaxation, in turn extending the time scale of the FiM state. These findings are essential for designing novel optical-driven ultrafast 2D magnetic switches.
- Klíčová slova
- 2D magnetism, antiferromagnetism, nonadiabatic MD, real-time TDDFT, spin dynamics, spin relaxation,
- Publikační typ
- časopisecké články MeSH
Magnetism and the existence of magnetic order in a material is determined by its dimensionality. In this regard, the recent emergence of magnetic layered van der Waals (vdW) materials provides a wide playground to explore the exotic magnetism arising in the two-dimensional (2D) limit. The magnetism of 2D flakes, especially antiferromagnetic ones, however, cannot be easily probed by conventional magnetometry techniques, being often replaced by indirect methods like Raman spectroscopy. Here, we make use of an alternative approach to provide direct magnetic evidence of few-layer vdW materials, including antiferromagnets. We take advantage of a surfactant-free, liquid-phase exfoliation (LPE) method to obtain thousands of few-layer FePS3 flakes that can be quenched in a solvent and measured in a conventional SQUID magnetometer. We show a direct magnetic evidence of the antiferromagnetic transition in FePS3 few-layer flakes, concomitant with a clear reduction of the Néel temperature with the flake thickness, in contrast with previous Raman reports. The quality of the LPE FePS3 flakes allows the study of electron transport down to cryogenic temperatures. The significant through-flake conductance is sensitive to the antiferromagnetic order transition. Besides, an additional rich spectra of electron transport excitations, including secondary magnetic transitions and potentially magnon-phonon hybrid states, appear at low temperatures. Finally, we show that the LPE is additionally a good starting point for the mass covalent functionalization of 2D magnetic materials with functional molecules. This technique is extensible to any vdW magnetic family.
- Klíčová slova
- FePS3, electron transport, liquid-phase exfoliation, magnetic van der Waals, magnon, two-dimensional,
- Publikační typ
- časopisecké články MeSH
Controlling magnetism at nanometer length scales is essential for realizing high-performance spintronic, magneto-electric and topological devices and creating on-demand spin Hamiltonians probing fundamental concepts in physics. Van der Waals (vdW)-bonded layered magnets offer exceptional opportunities for such spin texture engineering. Here, we demonstrate nanoscale structural control in the layered magnet CrSBr with the potential to create spin patterns without the environmental sensitivity that has hindered such manipulations in other vdW magnets. We drive a local phase transformation using an electron beam that moves atoms and exchanges bond directions, effectively creating regions that have vertical vdW layers embedded within the initial horizontally vdW bonded exfoliated flakes. We calculate that the newly formed two-dimensional structure is ferromagnetically ordered in-plane with an energy gap in the visible spectrum, and weak antiferromagnetism between the planes, suggesting possibilities for creating spin textures and quantum magnetic phases.
- Publikační typ
- časopisecké články MeSH