Most cited article - PubMed ID 30397112
Arginine-rich cell-penetrating peptides induce membrane multilamellarity and subsequently enter via formation of a fusion pore
This study employs molecular dynamics (MD) simulations to investigate the adsorption and aggregation behavior of simple polyarginine cell-penetrating peptides (CPPs), specifically modeled as R9 peptides, at zwitterionic phosphocholine POPC membranes under varying ionic strengths of two peptide concentrations and two concentrations of NaCl and CaCl2. The results reveal an intriguing phenomenon of R9 aggregation at the membrane, which is dependent on the ionic strength, indicating a salting-out effect. As the peptide concentration and ionic strength increase, peptide aggregation also increases, with aggregate lifetimes and sizes showing a corresponding rise, accompanied by the total decrease of adsorbed peptides at the membrane surface. Notably, in high ionic strength environments, large R9 aggregates, such as octamers, are also observed occasionally. The salting-out, typically uncommon for short positively charged peptides, is attributed to the unique properties of arginine amino acid, specifically by its side chain containing amphiphilic guanidinium (Gdm+) ion which makes both intermolecular hydrophobic like-charge Gdm+ - Gdm+ and salt-bridge Gdm+ - C-terminus interactions, where the former are increased with the ionic strength, and the latter decreased due to electrostatic screening. The aggregation behavior of R9 peptides at membranes can also be linked to their CPP translocation properties, suggesting that aggregation may aid in translocation across cellular membranes.
- Keywords
- Ionic strength, Molecular dynamics simulations, Peptide aggregation, Phosphocholine lipid bilayers, Polyarginines, Salting-out,
- Publication type
- Journal Article MeSH
The routinely employed periodic boundary conditions complicate molecular simulations of physiologically relevant asymmetric lipid membranes together with their distinct solvent environments. Therefore, separating the extracellular fluid from its cytosolic counterpart has often been performed using a costly double-bilayer setup. Here, we demonstrate that the lipid membrane and solvent asymmetry can be efficiently modeled with a single lipid bilayer by applying an inverted flat-bottom potential to ions and other solute molecules, thereby restraining them to only interact with the relevant leaflet. We carefully optimized the parameters of the suggested method so that the results obtained using the flat-bottom and double-bilayer approaches become mutually indistinguishable. Then, we apply the flat-bottom approach to lipid bilayers with various compositions and solvent environments, covering ions and cationic peptides to validate the approach in a realistic use case. We also discuss the possible limitations of the method as well as its computational efficiency and provide a step-by-step guide on how to set up such simulations in a straightforward manner.
- MeSH
- Lipid Bilayers * chemistry MeSH
- Solvents MeSH
- Molecular Dynamics Simulation * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Lipid Bilayers * MeSH
- Solvents MeSH
Ethylenediaminetetraacetic acid (EDTA) is frequently used in lipid experiments to remove redundant ions, such as Ca2+, from the sample solution. In this work, combining molecular dynamics (MD) simulations and Langmuir monolayer experiments, we show that on top of the expected Ca2+ depletion, EDTA anions themselves bind to phosphatidylcholine (PC) monolayers. This binding, originating from EDTA interaction with choline groups of PC lipids, leads to the adsorption of EDTA anions at the monolayer surface and concentration-dependent changes in surface pressure as measured by monolayer experiments and explained by MD simulations. This surprising observation emphasizes that lipid experiments carried out using EDTA-containing solutions, especially of high concentrations, must be interpreted very carefully due to potential interfering interactions of EDTA with lipids and other biomolecules involved in the experiment, e.g., cationic peptides, that may alter membrane-binding affinities of studied compounds.
- MeSH
- Edetic Acid MeSH
- Phosphatidylcholines * chemistry MeSH
- Ions MeSH
- Membranes, Artificial * MeSH
- Molecular Dynamics Simulation MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Edetic Acid MeSH
- Phosphatidylcholines * MeSH
- Ions MeSH
- Membranes, Artificial * MeSH
Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.
- MeSH
- Adsorption MeSH
- Arginine MeSH
- Phosphatidylcholines chemistry MeSH
- Phosphorylcholine MeSH
- Lecithins MeSH
- Lipid Bilayers * chemistry MeSH
- Osmolar Concentration MeSH
- Cell-Penetrating Peptides * chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Arginine MeSH
- Phosphatidylcholines MeSH
- Phosphorylcholine MeSH
- Lecithins MeSH
- Lipid Bilayers * MeSH
- Cell-Penetrating Peptides * MeSH
Nucleolin is a multifunctional RNA Binding Protein (RBP) with diverse subcellular localizations, including the nucleolus in all eukaryotic cells, the plasma membrane in tumor cells, and the axon in neurons. Here we show that the glycine arginine rich (GAR) domain of nucleolin drives subcellular localization via protein-protein interactions with a kinesin light chain. In addition, GAR sequences mediate plasma membrane interactions of nucleolin. Both these modalities are in addition to the already reported involvement of the GAR domain in liquid-liquid phase separation in the nucleolus. Nucleolin transport to axons requires the GAR domain, and heterozygous GAR deletion mice reveal reduced axonal localization of nucleolin cargo mRNAs and enhanced sensory neuron growth. Thus, the GAR domain governs axonal transport of a growth controlling RNA-RBP complex in neurons, and is a versatile localization determinant for different subcellular compartments. Localization determination by GAR domains may explain why GAR mutants in diverse RBPs are associated with neurodegenerative disease.
- Keywords
- axonal transport, cell size regulation, local translation, protein-membrane interaction, subcellular localization,
- MeSH
- Axonal Transport genetics MeSH
- Cell Nucleolus metabolism ultrastructure MeSH
- Gene Expression MeSH
- Phosphoproteins chemistry genetics metabolism MeSH
- HEK293 Cells MeSH
- HeLa Cells MeSH
- Kinesins genetics metabolism MeSH
- Humans MeSH
- RNA, Messenger genetics metabolism MeSH
- Mutation MeSH
- Mice, Inbred BALB C MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Sciatic Nerve cytology metabolism MeSH
- Neurons cytology metabolism MeSH
- Nucleolin MeSH
- Primary Cell Culture MeSH
- Protein Domains MeSH
- RNA-Binding Proteins chemistry genetics metabolism MeSH
- Amino Acid Sequence MeSH
- Ganglia, Spinal cytology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Phosphoproteins MeSH
- Kinesins MeSH
- Kns2 protein, mouse MeSH Browser
- RNA, Messenger MeSH
- RNA-Binding Proteins MeSH