Nejvíce citovaný článek - PubMed ID 30618544
Tuning Neuromodulation Effects by Orientation Selective Deep Brain Stimulation in the Rat Medial Frontal Cortex
Besides being responsible for olfaction and air intake, the nose contains abundant vasculature and autonomic nervous system innervations, and it is a cerebrospinal fluid clearance site. Therefore, the nose is an attractive target for functional MRI (fMRI). Yet, nose fMRI has not been possible so far due to signal losses originating from nasal air-tissue interfaces. Here, we demonstrated feasibility of nose fMRI by using novel ultrashort/zero echo time (TE) MRI. Results obtained in the resting-state from 13 healthy participants at 7T and in 5 awake mice at 9.4T revealed a highly reproducible resting-state nose functional network that likely reflects autonomic nervous system activity. Another network observed in humans involves the nose, major brain vessels and CSF spaces, presenting a temporal dynamic that correlates with heart rate and breathing rate. These resting-state nose functional signals should help elucidate peripheral and central nervous system integrations.
- MeSH
- autonomní nervový systém fyziologie diagnostické zobrazování MeSH
- dospělí MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mapování mozku metody MeSH
- mladý dospělý MeSH
- mozek fyziologie diagnostické zobrazování MeSH
- myši MeSH
- nos * fyziologie diagnostické zobrazování MeSH
- odpočinek fyziologie MeSH
- srdeční frekvence fyziologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Parkinson's disease (PD), even though generally perceived as a dominantly motor disorder, is associated with a wide range of non-motor symptoms, including mixed anxiety-depressive disorder (MADD). OBJECTIVES: The aim of the presented study was to determine whether deep brain stimulation (DBS) of the subthalamic nucleus (STN) brings the functional characteristics of non-motor networks closer to the condition detected in healthy population and whether pre-DBS presence of MADD in PD patients was associated with different reaction to this therapeutic modality. METHODS: Resting-state fMRI signature elicited by STN DBS activation and deactivation in 81 PD patients was compared against healthy controls, with the focus on measures of efficiency of information processing and localised subnetwork differences. RESULTS: While all the MRI metrics showed statistically significant differences between PD patients in DBS OFF condition and healthy controls, none were detected in such a comparison against DBS ON condition. Furthermore, in the post-DBS evaluation, PD patients with MADD in the pre-DBS stage showed no differences in depression scales compared to pre-DBS psychiatrically intact PD patients, but still exhibited lower DBS-related connectivity in a subnetwork encompassing anterior and posterior cingulate, dorsolateral prefrontal and medial temporal cortices. CONCLUSIONS: STN DBS improved all the metrics of interest towards the healthy state, normalising the resting-state MRI signature of PD. Furthermore, pre-DBS presence of MADD, even though clinically silent at post-DBS MRI acquisition, was associated with lower DBS effect in areas highly relevant for depression. This finding points to a possibly latent nature of post-DBS MADD, calling for caution in further follow-up of these patients.
The recently introduced orientation selective deep brain stimulation (OS-DBS) technique freely controls the direction of the electric field's spatial gradient by using multiple contacts with independent current sources within a multielectrode array. The goal of OS-DBS is to align the electrical field along the axonal track of interest passing through the stimulation site. Here we utilized OS-DBS with a planar 3-channel electrode for stimulating the rat entorhinal cortex (EC) and medial septal nucleus (MSN), two promising areas for DBS treatment of Alzheimer's disease. The brain responses to OS-DBS were monitored by whole brain functional magnetic resonance imaging (fMRI) at 9.4 T with Multi-Band Sweep Imaging with Fourier Transformation (MB-SWIFT). Varying the in-plane OS-DBS stimulation angle in the EC resulted in activity modulation of multiple downstream brain areas involved in memory and cognition. Contrary to that, no angle dependence of brain activations was observed when stimulating the MSN, consistent with predictions based on the electrode configuration and on the main axonal directions of the targets derived from diffusion MRI tractography and histology. We conclude that tuning the OS-DBS stimulation angle modulates the activation of brain areas relevant to Alzheimer's disease, thus holding great promise in the DBS treatment of the disease.
- MeSH
- Alzheimerova nemoc * diagnostické zobrazování terapie MeSH
- cortex entorhinalis diagnostické zobrazování fyziologie MeSH
- hluboká mozková stimulace * metody MeSH
- kognice MeSH
- krysa rodu Rattus MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek MeSH
- septální jádra * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.
- MeSH
- epidurální prostor diagnostické zobrazování patofyziologie MeSH
- implantované elektrody MeSH
- krysa rodu Rattus MeSH
- magnetická rezonanční tomografie * MeSH
- míšní stimulace * MeSH
- poranění míchy * diagnostické zobrazování patofyziologie terapie MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Deep brain stimulation (DBS) has become an important tool in the management of a wide spectrum of diseases in neurology and psychiatry. Target selection is a vital aspect of DBS so that only the desired areas are stimulated. Segmented leads and current steering have been shown to be promising additions to DBS technology enabling better control of the stimulating electric field. Recently introduced orientation selective DBS (OS-DBS) is a related development permitting sensitization of the stimulus to axonal pathways with different orientations by freely controlling the primary direction of the electric field using multiple contacts. Here, we used OS-DBS to stimulate the subthalamic nucleus (STN) in healthy rats while simultaneously monitoring the induced brain activity with fMRI. Maximal activation of the sensorimotor and basal ganglia-thalamocortical networks was observed when the electric field was aligned mediolaterally in the STN pointing in the lateral direction, while no cortical activation was observed with the electric field pointing medially to the opposite direction. Such findings are consistent with mediolateral main direction of the STN fibers, as seen with high resolution diffusion imaging and histology. The asymmetry of the OS-DBS dipolar field distribution using three contacts along with the potential stimulation of the internal capsule, are also discussed. We conclude that OS-DBS offers an additional degree of flexibility for optimization of DBS of the STN which may enable a better treatment response.
- Klíčová slova
- Deep brain stimulation, Movement disorders, Orientation selective, Parkinson’s disease, Subthalamic nucleus, fMRI,
- MeSH
- hluboká mozková stimulace metody MeSH
- implantované elektrody * MeSH
- krysa rodu Rattus MeSH
- magnetická rezonanční tomografie MeSH
- nucleus subthalamicus fyziologie MeSH
- potkani Sprague-Dawley MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH