Nejvíce citovaný článek - PubMed ID 30620719
Ubiquitin-proteasome system participates in the de-aggregation of spermadhesins and DQH protein during boar sperm capacitation
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
- Klíčová slova
- Biomarker, Infertility, Omics, Proteasome, Proteostasis, Seminal plasma, Sperm, Thioredoxin, Ubiquitin,
- MeSH
- fertilita * fyziologie MeSH
- homeostáze proteinů * fyziologie MeSH
- lidé MeSH
- mužská infertilita * metabolismus genetika patologie patofyziologie MeSH
- spermatogeneze * MeSH
- spermie * metabolismus patologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Capacitation is an essential post-testicular maturation event endowing spermatozoa with fertilizing capacity within the female reproductive tract, significant for fertility, reproductive health, and contraception. By using a human-relevant large animal model, the domestic boar, this study focuses on furthering our understanding of the involvement of the ubiquitin-proteasome system (UPS) in sperm capacitation. The UPS is a universal, evolutionarily conserved, cellular proteome-wide degradation and recycling machinery, that has been shown to play a significant role in reproduction during the past two decades. Herein, we have used a bottom-up proteomic approach to (i) monitor the capacitation-related changes in the sperm protein levels, and (ii) identify the targets of UPS regulation during sperm capacitation. Spermatozoa were capacitated under proteasomal activity-permissive and inhibiting conditions and extracted sperm proteins were subjected to high-resolution mass spectrometry. We report that 401 individual proteins differed at least two-fold in abundance (P < 0.05) after in vitro capacitation (IVC) and 13 proteins were found significantly different (P < 0.05) between capacitated spermatozoa with proteasomal inhibition compared to the vehicle control. These proteins were associated with biological processes including sperm capacitation, sperm motility, metabolism, binding to zona pellucida, and proteasome-mediated catabolism. Changes in RAB2A, CFAP161, and TTR during IVC were phenotyped by immunocytochemistry, image-based flow cytometry, and Western blotting. We conclude that (i) the sperm proteome is subjected to extensive remodeling during sperm capacitation, and (ii) the UPS has a narrow range of distinct protein substrates during capacitation. This knowledge highlights the importance of the UPS in sperm capacitation and offers opportunities to identify novel pharmacological targets to modulate sperm fertilizing ability for the benefit of human reproductive health, assisted reproductive therapy, and contraception, as well as reproductive management in food animal agriculture.
- Klíčová slova
- Pig, Sperm capacitation, Sperm proteomics, Ubiquitin-proteasome system,
- MeSH
- kapacitace spermií * fyziologie MeSH
- prasata MeSH
- proteasomový endopeptidasový komplex * metabolismus MeSH
- proteom metabolismus MeSH
- proteomika * metody MeSH
- spermie * metabolismus fyziologie MeSH
- ubikvitin * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteasomový endopeptidasový komplex * MeSH
- proteom MeSH
- ubikvitin * MeSH
A series of biochemical and biophysical changes during sperm capacitation initiates various signaling pathways related to protein phosphorylation leading to sperm hyperactivation, simultaneously with the regulation of proteasomal activity responsible for protein degradation and turnover. Our study aimed to unveil the role of the proteasome in the regulation of boar sperm motility, hyperactivated status, tyrosine phosphorylation, and total protein ubiquitination. The proteolytic activity of the 20S proteasomal core was inhibited by MG-132 in concentrations of 10, 25, 50, and 100 μM; and monitored parameters were analyzed every hour during 3 h of in vitro capacitation (IVC). Sperm motility and kinematic parameters were analyzed by Computer Assisted Sperm Analysis (CASA) during IVC, showing a significant, negative, dose-dependent effect of MG-132 on total and progressive sperm motility (TMOT, PMOT, respectively). Furthermore, proteasomal inhibition by 50 and 100 μM MG-132 had a negative impact on velocity-based kinematic sperm parameters (VSL, VAP, and VCL). Parameters related to the progressivity of sperm movement (LIN, STR) and ALH were the most affected by the highest inhibitor concentration (100 μM). Cluster analysis revealed that the strongest proteasome-inhibiting treatment had a significant effect (p ≤ 0.05) on the hyperactivated sperm subpopulation. The flow cytometric viability results proved that reduced TMOT and PMOT were not caused by disruption of the integrity of the plasma membrane. Neither the protein tyrosine phosphorylation profile changes nor the accumulation of protein ubiquitination was observed during the course of capacitation under proteasome inhibition. In conclusion, inhibition of the proteasome reduced the ability of spermatozoa to undergo hyperactivation; however, there was no significant effect on the level of protein tyrosine phosphorylation and accumulation of ubiquitinated proteins. These effects might be due to the presence of compensatory mechanisms or the alteration of various ubiquitin-proteasome system-regulated pathways.
- Klíčová slova
- cluster analysis, hyperactivation, phosphorylation, reproduction, sperm physiology, ubiquitin-proteasome system,
- Publikační typ
- časopisecké články MeSH
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
- Klíčová slova
- ZP-ligands, gamete interaction, sperm-ZP receptors, spermatozoa, zona pellucida,
- MeSH
- lidé MeSH
- ligandy MeSH
- membránové glykoproteiny metabolismus MeSH
- mezibuněčná komunikace * MeSH
- receptory buněčného povrchu metabolismus MeSH
- savci metabolismus MeSH
- spermie cytologie metabolismus MeSH
- zona pellucida metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- ligandy MeSH
- membránové glykoproteiny MeSH
- receptory buněčného povrchu MeSH
Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS. Alterations in the sperm surface protein composition also relate to the porcine β-microseminoprotein (MSMB/PSP94), seminal plasma protein known as immunoglobulin-binding factor, and motility inhibitor. MSMB was detected in the acrosomal region as well as the flagellum of ejaculated boar spermatozoa, while the signal disappeared from the acrosomal region after in vitro capacitation (IVC). The involvement of UPS in the MSMB degradation during sperm IVC was studied using proteasomal interference and ubiquitin-activating enzyme (E1) inhibiting conditions by image-based flow cytometry and Western blot detection. Our results showed no accumulation of porcine MSMB either under proteasomal inhibition or under E1 inhibiting conditions. In addition, the immunoprecipitation study did not detect any ubiquitination of sperm MSMB nor was MSMB detected in the affinity-purified fraction containing ubiquitinated sperm proteins. Based on our results, we conclude that UPS does not appear to be the regulatory mechanism in the case of MSMB and opening new questions for further studies. Thus, the capacitation-induced processing of seminal plasma proteins on the sperm surface may be more complex than previously thought, employing multiple proteolytic systems in a non-redundant manner.
- Klíčová slova
- MSMB, PSP94, boar, capacitation, spermatozoa, ubiquitin-proteasome system, β-microseminoprotein,
- MeSH
- kapacitace spermií fyziologie MeSH
- prasata MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- sekreční proteiny prostaty metabolismus MeSH
- spermie metabolismus fyziologie MeSH
- ubikvitin metabolismus MeSH
- ubikvitinace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- beta-microseminoprotein MeSH Prohlížeč
- proteasomový endopeptidasový komplex MeSH
- sekreční proteiny prostaty MeSH
- ubikvitin MeSH
Ubiquitination is a stable, reversible posttranslational modification of target proteins by covalent ligation of the small chaperone protein ubiquitin. Most commonly ubiquitination targets proteins for degradation/recycling by the 26S proteasome in a well-characterized enzymatic cascade. Studies using human and non-human mammalian spermatozoa revealed the role of the ubiquitin-proteasome system (UPS) in the regulation of fertilization, including sperm-zona pellucida (ZP) interactions as well as the early events of sperm capacitation, the remodeling of the sperm plasma membrane and acrosome, and for the acquisition of sperm fertilizing ability. The present study investigated the activity of UPS during in vitro capacitation of fresh boar spermatozoa in relation to changes in sperm proteome. Parallel and sequential treatments of ejaculated and capacitated spermatozoa under proteasome permissive/inhibiting conditions were used to isolate putative sperm proteasome-associated sperm proteins in a compartment-specific manner. A differential proteomic approach employing 1D PAGE revealed differences in accumulated proteins at the molecular weights of 60, 58, 49, and 35 kDa, and MS analysis revealed the accumulation of proteins previously reported as proteasome co-purifying proteins, as well as some novel proteins. Among others, P47/lactadherin, ACRBP, ADAM5, and SPINK2 (alias SAAI) were processed by the proteasome in a capacitation dependent manner. Furthermore, the capacitation-induced reorganization of the outer acrosomal membrane was slowed down in the presence of proteasomal inhibitors. These novel results support the proposed role of UPS in sperm capacitation and open several new lines of inquiry into sperm capacitation mechanism.
- MeSH
- buněčná membrána metabolismus MeSH
- kapacitace spermií * MeSH
- prasata MeSH
- proteasomový endopeptidasový komplex metabolismus MeSH
- proteomika MeSH
- spermie cytologie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- ATP dependent 26S protease MeSH Prohlížeč
- proteasomový endopeptidasový komplex MeSH