Nejvíce citovaný článek - PubMed ID 31444392
Structural features in the glycine-binding sites of the GluN1 and GluN3A subunits regulate the surface delivery of NMDA receptors
NMDA receptors (NMDARs) are ionotropic glutamate receptors that play a key role in excitatory neurotransmission. The number and subtype of surface NMDARs are regulated at several levels, including their externalization, internalization, and lateral diffusion between the synaptic and extrasynaptic regions. Here, we used novel anti-GFP (green fluorescent protein) nanobodies conjugated to either the smallest commercially available quantum dot 525 (QD525) or the several nanometer larger (and thus brighter) QD605 (referred to as nanoGFP-QD525 and nanoGFP-QD605, respectively). Targeting the yellow fluorescent protein-tagged GluN1 subunit in rat hippocampal neurons, we compared these two probes to a previously established larger probe, a rabbit anti-GFP IgG together with a secondary IgG conjugated to QD605 (referred to as antiGFP-QD605). The nanoGFP-based probes allowed faster lateral diffusion of the NMDARs, with several-fold increased median values of the diffusion coefficient (D). Using thresholded tdTomato-Homer1c signals to mark synaptic regions, we found that the nanoprobe-based D values sharply increased at distances over 100 nm from the synaptic edge, while D values for antiGFP-QD605 probe remained unchanged up to a 400 nm distance. Using the nanoGFP-QD605 probe in hippocampal neurons expressing the GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits, we detected subunit-dependent differences in the synaptic localization of NMDARs, D value, synaptic residence time, and synaptic-extrasynaptic exchange rate. Finally, we confirmed the applicability of the nanoGFP-QD605 probe to study differences in the distribution of synaptic NMDARs by comparing to data obtained with nanoGFPs conjugated to organic fluorophores, using universal point accumulation imaging in nanoscale topography and direct stochastic optical reconstruction microscopy.SIGNIFICANCE STATEMENT Our study systematically compared the localization and mobility of surface NMDARs containing GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits expressed in rodent hippocampal neurons, using anti-green fluorescent protein (GFP) nanobodies conjugated to the quantum dot 605 (nanoGFP-QD605), as well as nanoGFP probes conjugated with small organic fluorophores. Our comprehensive analysis showed that the method used to delineate the synaptic region plays an important role in the study of synaptic and extrasynaptic pools of NMDARs. In addition, we showed that the nanoGFP-QD605 probe has optimal parameters for studying the mobility of NMDARs because of its high localization accuracy comparable to direct stochastic optical reconstruction microscopy and longer scan time compared with universal point accumulation imaging in nanoscale topography. The developed approaches are readily applicable to the study of any GFP-labeled membrane receptors expressed in mammalian neurons.
- Klíčová slova
- GluN subunit, excitatory synapse, glutamate receptor, lateral diffusion, live microscopy, mammalian neuron,
- MeSH
- hipokampus metabolismus MeSH
- imunoglobulin G metabolismus MeSH
- jednodoménové protilátky * metabolismus MeSH
- králíci MeSH
- krysa rodu Rattus MeSH
- neurony metabolismus MeSH
- receptory N-methyl-D-aspartátu * metabolismus MeSH
- savci MeSH
- synapse fyziologie MeSH
- zvířata MeSH
- Check Tag
- králíci MeSH
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- imunoglobulin G MeSH
- jednodoménové protilátky * MeSH
- receptory N-methyl-D-aspartátu * MeSH
N-methyl-D-aspartate receptors (NMDARs) belong to a family of ionotropic glutamate receptors that play essential roles in excitatory neurotransmission and synaptic plasticity in the mammalian central nervous system (CNS). Functional NMDARs consist of heterotetramers comprised of GluN1, GluN2A-D, and/or GluN3A-B subunits, each of which contains four membrane domains (M1 through M4), an intracellular C-terminal domain, a large extracellular N-terminal domain composed of the amino-terminal domain and the S1 segment of the ligand-binding domain (LBD), and an extracellular loop between M3 and M4, which contains the S2 segment of the LBD. Both the number and type of NMDARs expressed at the cell surface are regulated at several levels, including their translation and posttranslational maturation in the endoplasmic reticulum (ER), intracellular trafficking via the Golgi apparatus, lateral diffusion in the plasma membrane, and internalization and degradation. This review focuses on the roles played by the extracellular regions of GluN subunits in ER processing. Specifically, we discuss the presence of ER retention signals, the integrity of the LBD, and critical N-glycosylated sites and disulfide bridges within the NMDAR subunits, each of these steps must pass quality control in the ER in order to ensure that only correctly assembled NMDARs are released from the ER for subsequent processing and trafficking to the surface. Finally, we discuss the effect of pathogenic missense mutations within the extracellular domains of GluN subunits with respect to ER processing of NMDARs.
- Klíčová slova
- disulfide bridges, excitatory synapse, glutamate receptor, glycosylation, posttranslational modification,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Alzheimer's disease (AD) is a complex disorder with unknown etiology. Currently, only symptomatic therapy of AD is available, comprising cholinesterase inhibitors and N-methyl-d-aspartate (NMDA) receptor antagonists. Drugs targeting only one pathological condition have generated only limited efficacy. Thus, combining two or more therapeutic interventions into one molecule is believed to provide higher benefit for the treatment of AD. In the presented study, we designed, synthesized, and biologically evaluated 15 novel fluoren-9-amine derivatives. The in silico prediction suggested both the oral availability and permeation through the blood-brain barrier (BBB). An initial assessment of the biological profile included determination of the cholinesterase inhibition and NMDA receptor antagonism at the GluN1/GluN2A and GluN1/GluN2B subunits, along with a low cytotoxicity profile in the CHO-K1 cell line. Interestingly, compounds revealed a selective butyrylcholinesterase (BChE) inhibition pattern with antagonistic activity on the NMDARs. Their interaction with butyrylcholinesterase was elucidated by studying enzyme kinetics for compound 3c in tandem with the in silico docking simulation. The docking study showed the interaction of the tricyclic core of new derivatives with Trp82 within the anionic site of the enzyme in a similar way as the template drug tacrine. From the kinetic analysis, it is apparent that 3c is a competitive inhibitor of BChE.
- Klíčová slova
- Alzheimer’s disease, N-methyl-d-aspartate receptor, acetylcholinesterase, butyrylcholinesterase, fluorene, in silico, in vitro, multi-target directed ligands,
- MeSH
- Alzheimerova nemoc farmakoterapie enzymologie genetika patologie MeSH
- butyrylcholinesterasa chemie účinky léků genetika MeSH
- CHO buňky MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- Cricetulus MeSH
- fluoreny chemie farmakologie MeSH
- hematoencefalická bariéra účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- lidé MeSH
- počítačová simulace MeSH
- receptory N-methyl-D-aspartátu antagonisté a inhibitory genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- fluorene MeSH Prohlížeč
- fluoreny MeSH
- inhibitory enzymů MeSH
- N-methyl D-aspartate receptor subtype 2A MeSH Prohlížeč
- NR2B NMDA receptor MeSH Prohlížeč
- receptory N-methyl-D-aspartátu MeSH
Although numerous pathogenic mutations have been identified in various subunits of N-methyl-D-aspartate receptors (NMDARs), ionotropic glutamate receptors that are central to glutamatergic neurotransmission, the functional effects of these mutations are often unknown. Here, we combined in silico modelling with microscopy, biochemistry, and electrophysiology in cultured HEK293 cells and hippocampal neurons to examine how the pathogenic missense mutation S688Y in the GluN1 NMDAR subunit affects receptor function and trafficking. We found that the S688Y mutation significantly increases the EC50 of both glycine and D-serine in GluN1/GluN2A and GluN1/GluN2B receptors, and significantly slows desensitisation of GluN1/GluN3A receptors. Moreover, the S688Y mutation reduces the surface expression of GluN3A-containing NMDARs in cultured hippocampal neurons, but does not affect the trafficking of GluN2-containing receptors. Finally, we found that the S688Y mutation reduces Ca2+ influx through NMDARs and reduces NMDA-induced excitotoxicity in cultured hippocampal neurons. These findings provide key insights into the molecular mechanisms that underlie the regulation of NMDAR subtypes containing pathogenic mutations.
- MeSH
- glycin farmakologie MeSH
- glycinové látky farmakologie MeSH
- HEK293 buňky MeSH
- hipokampus cytologie účinky léků metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- ligandy MeSH
- molekulární modely MeSH
- mutace * MeSH
- neurony cytologie účinky léků metabolismus MeSH
- potkani Wistar MeSH
- proteinové domény MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- receptory N-methyl-D-aspartátu genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glycin MeSH
- glycinové látky MeSH
- GRIN1 protein, human MeSH Prohlížeč
- ligandy MeSH
- NMDA receptor A1 MeSH Prohlížeč
- proteiny nervové tkáně MeSH
- receptory N-methyl-D-aspartátu MeSH