Nejvíce citovaný článek - PubMed ID 31505735
Fabrication and Characterization of Carboxymethyl Starch/Poly(l-Lactide) Acid/β-Tricalcium Phosphate Composite Nanofibers via Electrospinning
Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers for potential applications as bone-tissue scaffolds. The composite nanofibers were prepared by electrospinning in the combination of 5% v/v carboxy-methyl starch (CMS) and 0.25 wt% of β-TCP with the PLLA as a matrix component. The composites nanofibers were exposed under 5, 30, and 100 kGy of irradiation dose. The electron-beam irradiation showed no morphological damage to the fibers, and slight reduction in the water-contact angle and mechanical strength at the higher-irradiation doses. The chain scission was found to be a dominant effect; the higher doses of electron-beam irradiation thus increased the in vitro degradation rate of the composite nanofibers. The chemical interaction due to irradiation was indicated by the Fourier transform infrared (FTIR) spectrum and thermal behavior was investigated by a differential scanning calorimeter (DSC). The results showed that the electron-beam-induced poly L-lactide acid/carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers may have great potential for bone-tissue engineering.
- Klíčová slova
- PLLA, biodegradation, carboxy-methyl starch, electrospun, β-tricalcium phosphate,
- Publikační typ
- časopisecké články MeSH
Bone tissue is the second tissue to be replaced. Annually, over four million surgical treatments are performed. Tissue engineering constitutes an alternative to autologous grafts. Its application requires three-dimensional scaffolds, which mimic human body environment. Bone tissue has a highly organized structure and contains mostly inorganic components. The scaffolds of the latest generation should not only be biocompatible but also promote osteoconduction. Poly (lactic acid) nanofibers are commonly used for this purpose; however, they lack bioactivity and do not provide good cell adhesion. Chitosan is a commonly used biopolymer which positively affects osteoblasts' behavior. The aim of this article was to prepare novel hybrid 3D scaffolds containing nanohydroxyapatite capable of cell-response stimulation. The matrixes were successfully obtained by PLA electrospinning and microwave-assisted chitosan crosslinking, followed by doping with three types of metallic nanoparticles (Au, Pt, and TiO2). The products and semi-components were characterized over their physicochemical properties, such as chemical structure, crystallinity, and swelling degree. Nanoparticles' and ready biomaterials' morphologies were investigated by SEM and TEM methods. Finally, the scaffolds were studied over bioactivity on MG-63 and effect on current-stimulated biomineralization. Obtained results confirmed preparation of tunable biomimicking matrixes which may be used as a promising tool for bone-tissue engineering.
- Klíčová slova
- biotechnology, properties of nanoparticles–reinforced polymers, smart hybrid materials,
- Publikační typ
- časopisecké články MeSH
Burns affect almost half a million of Americans annually. In the case of full-thickness skin injuries, treatment requires a transplant. The development of bioactive materials that promote damaged tissue regeneration constitutes a great alternative to autografts. For this reason, special attention is focused on three-dimensional scaffolds that are non-toxic to skin cells and can mimic the extracellular matrix, which is mainly composed of nanofibrous proteins. Electrospinning, which enables the preparation of nanofibers, is a powerful tool in the field of biomaterials. In this work, novel hybrid poly (lactic acid)/chitosan biomaterials functionalized with three types of nanoparticles (NPs) were successfully developed. ZnO, Fe3O4, and Au NPs were investigated over their morphology by TEM method. The top layer was obtained from PLA nanofibers, while the bottom layer was prepared from acylated chitosan. The layers were studied over their morphology by the SEM method and their chemical structure by FT-IR. To verify their potential in burn wound treatment, the scaffolds' susceptibility to biodegradation as well as moisture permeability were calculated. Also, biomaterials conductivity was determined in terms of electrostimulation. Finally, cytotoxicity tests were carried out by XTT assay and morphology analysis using both fibroblasts cell line and primary cells. The hybrid nanofibrous scaffolds displayed a great potential in tissue engineering.
- Klíčová slova
- biomedical applications, electrospinning, hybrid polymer scaffolds,
- Publikační typ
- časopisecké články MeSH