Nejvíce citovaný článek - PubMed ID 31553204
Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.
- Klíčová slova
- 3D bioprinting, 4D materials, biologically derived materials, biomimetic scaffolds,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Magnesium-based bioresorbable Magmaris stents are rapidly resorbed. Few randomized studies have evaluated the efficacy of such stents in patients with acute coronary syndrome. AIM: To investigate late lumen loss as assessed via quantitative coronary angiography (QCA) and optical coherence tomography (OCT) in patients with acute coronary syndrome treated with Magmaris stents or permanent, everolimus-eluting metallic Xience stents. METHODS AND RESULTS: This PRAGUE-22 study was a two-centre, investigator-initiated, randomized study. Fifty patients were randomized based on the inclusion criteria for acute coronary syndrome and the anatomical suitability to receive Magmaris or Xience stents. The patient characteristics did not differ between the Magmaris group (n = 25) and Xience group (n = 25). The mean ages were 57.0 ± 10.5 vs. 55.5 ± 9.2 years (p = 0.541) and the total implanted stent length was 24.6 ± 10.7 mm vs. 27.6 ± 11.1 mm (p = 0.368), respectively. Four clinical events occurred in the Magmaris group and one in the Xience group during 12 months of follow-up. The extent of late lumen loss (assessed via QCA) at 12 months was greater in the Magmaris group than in the Xience group (0.54 ± 0.70 vs. 0.11 ± 0.37 mm; p = 0.029). The late lumen loss diameter (measured via OCT) in the Magmaris group was also significantly larger than that in the Xience group (0.59 ± 0.37 vs. 0.22 ± 0.20 mm; p = 0.01). CONCLUSION: Implantation of a magnesium-based bioresorbable stent in patients with acute coronary syndrome is associated with a greater extent of late lumen loss at the 12-month follow-up compared with implantation of a permanent, everolimus-eluting metallic stent. TRIAL REGISTRATION: ISRCTN89434356.
- Klíčová slova
- Acute coronary syndrome, Late lumen loss, Magnesium-based bioresorbable stents, Outcome, Percutaneous coronary intervention,
- MeSH
- akutní koronární syndrom * diagnostické zobrazování terapie MeSH
- everolimus škodlivé účinky MeSH
- hořčík MeSH
- koronární angiografie MeSH
- koronární angioplastika * škodlivé účinky metody MeSH
- lidé MeSH
- nemoci koronárních tepen * terapie MeSH
- sirolimus MeSH
- stenty uvolňující léky * MeSH
- vstřebatelné implantáty MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- everolimus MeSH
- hořčík MeSH
- sirolimus MeSH