Most cited article - PubMed ID 31638562
Metabolic Tools for Identification of New Mutations of Enzymes Engaged in Purine Synthesis Leading to Neurological Impairment
De novo synthesis of purines (DNPS) is a biochemical pathway that provides the purine bases for synthesis of essential biomolecules such as nucleic acids, energy transfer molecules, signaling molecules and various cofactors. Inborn errors of DNPS enzymes present with a wide spectrum of neurodevelopmental and neuromuscular abnormalities and accumulation of characteristic metabolic intermediates of the DNPS in body fluids and tissues. In this study, we present the second case of PAICS deficiency due to bi-allelic variants of PAICS gene encoding for a missense p.Ser179Pro and truncated p.Arg403Ter forms of the PAICS proteins. Two affected individuals were born at term after an uncomplicated pregnancy and delivery and presented later in life with progressive cerebral atrophy, epileptic encephalopathy, psychomotor retardation, and retinopathy. Plasma and urinary concentrations of dephosphorylated substrates of PAICS, AIr and CAIr were elevated, though they remained undetectable in skin fibroblasts. Both variants affect structural domains in SAICARs catalytic site and the oligomerization interface. In silico modeling predicted negative effects on PAICS oligomerization, enzyme stability and enzymatic activity. Consistent with these findings, affected skin fibroblasts were devoid of PAICS protein and enzyme activity. This was accompanied by alterations in contents of other DNPS proteins, which had co-localized in granular structures that are characteristic of purinosome formation. Our observation expands the clinical spectrum of PAICS deficiency from recurrent abortions and fatal neonatal form to later onset neurodevelopmental disorders. The rarity of this condition may be based on poor clinical recognition and limited access to specialized laboratory tests diagnostic for PAICS deficiency.
- MeSH
- Humans MeSH
- Mutation, Missense MeSH
- Multienzyme Complexes * genetics deficiency MeSH
- Siblings MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Names of Substances
- Multienzyme Complexes * MeSH
Purine de novo purine synthesis involves 10 reactions catalysed by six enzymes, including phosphoribosylformyglycinamidine synthase (PFAS). To date, genetic defects of three of these enzymes, namely ATIC, ADSL and PAICS, have been characterised in humans. Here, we report for the first time two individuals with PFAS deficiency. Probands were identified through metabolic and genetic screening of neurologically impaired individuals. The pathogenicity of the variants was established by structural and functional studies. Probands C1 and C2 presented with prematurity, short stature, recurrent seizures and mild neurological impairment. C1 had elevated urinary levels of formylglycineamide riboside (FGAr) and bi-allelic PFAS variants encoding the NP_036525.1:p.Arg811Trp substitution and the NP_036525.1:p.Glu228_Ser230 in-frame deletion. C2 is a 20-year-old female with a homozygous NP_036525.1:p.Asn264Lys substitution. These amino acid changes are predicted to affect the structural stability of PFAS. Accordingly, C1 skin fibroblasts showed decreased PFAS content and activity, with impaired purinosome formation that was restored by transfection with pTagBFP_PFAS_wt. The enzymatic activities of the corresponding recombinant mutant PFAS proteins were also reduced, and none of them, after transfection, corrected the elevated FGAR/r levels in PFAS-deficient HeLa cells. While genetic defects in purine de novo synthesis are typically considered in patients with severe neurological impairment, these disorders, especially PFAS deficiency, should also be considered in milder phenotypes.
- Keywords
- FGAR, PFAS deficiency, formylglycinamide riboside, metabolic disorder, purine de novo synthesis, purinosome,
- MeSH
- Humans MeSH
- Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor * genetics deficiency metabolism MeSH
- Young Adult MeSH
- Mutation MeSH
- Purine-Pyrimidine Metabolism, Inborn Errors * genetics MeSH
- Child, Preschool MeSH
- Purines * biosynthesis MeSH
- Check Tag
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Names of Substances
- Carbon-Nitrogen Ligases with Glutamine as Amide-N-Donor * MeSH
- phosphoribosylformylglycinamidine synthetase MeSH Browser
- purine MeSH Browser
- Purines * MeSH
Cytotoxicity of de novo purine synthesis (DNPS) metabolites is critical to the pathogenesis of three known and one putative autosomal recessive disorder affecting DNPS. These rare disorders are caused by biallelic mutations in the DNPS genes phosphoribosylformylglycineamidine synthase (PFAS), phosphoribosylaminoimidazolecarboxylase/phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), adenylosuccinate lyase (ADSL), and aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) and are clinically characterized by developmental abnormalities, psychomotor retardation, and nonspecific neurological impairment. At a biochemical level, loss of function of specific mutated enzymes results in elevated levels of DNPS ribosides in body fluids. The main pathogenic effect is attributed to the accumulation of DNPS ribosides, which are postulated to be toxic to the organism. Therefore, we decided to characterize the uptake and flux of several DNPS metabolites in HeLa cells and the impact of DNPS metabolites to viability of cancer cell lines and primary skin fibroblasts. We treated cells with DNPS metabolites and followed their flux in purine synthesis and degradation. In this study, we show for the first time the transport of formylglycinamide ribotide (FGAR), aminoimidazole ribotide (AIR), succinylaminoimidazolecarboxamide ribotide (SAICAR), and aminoimidazolecarboxamide ribotide (AICAR) into cells and their flux in DNPS and the degradation pathway. We found diminished cell viability mostly in the presence of FGAR and AIR. Our results suggest that direct cellular toxicity of DNPS metabolites may not be the primary pathogenetic mechanism in these disorders.
- Keywords
- ADSL, AICAR, AIR, ATIC, FGAR, PAICS, PFAS, SAICAR, cytotoxicity, purine synthesis,
- Publication type
- Journal Article MeSH
BACKGROUND: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
- Keywords
- Glutamine antagonist, LC-MS., biomarker, cancer, formylglycinamide ribonucleotide, formylglycinamidine ribonucleotide, purine synthesis,
- MeSH
- Biomarkers, Pharmacological analysis metabolism MeSH
- Chromatography, Liquid methods MeSH
- Glutamine antagonists & inhibitors MeSH
- Glycine analogs & derivatives analysis metabolism MeSH
- Mass Spectrometry methods MeSH
- Metabolic Networks and Pathways drug effects MeSH
- Mice MeSH
- Biomarkers, Tumor analysis metabolism MeSH
- Neoplasms * drug therapy metabolism MeSH
- Ribonucleotides * analysis metabolism MeSH
- Drug Development methods MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Biomarkers, Pharmacological MeSH
- Glutamine MeSH
- Glycine MeSH
- Biomarkers, Tumor MeSH
- phosphoribosyl-N-formylglycineamide MeSH Browser
- Ribonucleotides * MeSH