Nejvíce citovaný článek - PubMed ID 31690920
Reactive mode composition factor analysis of transition states: the case of coupled electron-proton transfers
Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.
- MeSH
- fenoly chemie MeSH
- katalytická doména MeSH
- katecholy chemie MeSH
- kinetika MeSH
- měď * chemie MeSH
- tyrosinasa * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- fenoly MeSH
- katecholy MeSH
- měď * MeSH
- tyrosinasa * MeSH
Methyl-coenzyme M reductase, responsible for the biological production of methane by catalyzing the reaction between coenzymes B (CoBS-H) and M (H3C-SCoM), hosts in its core an F430 cofactor with the low-valent NiI ion. The critical methanogenic step involves F430-assisted reductive cleavage of the H3C-S bond in coenzyme M, yielding the transient CH3 radical capable of hydrogen atom abstraction from the S-H bond in coenzyme B. Here, we computationally explored whether and why F430 is unique for methanogenesis in comparison to four identified precursors formed consecutively during its biosynthesis. Indeed, all precursors are less proficient than the native F430, and catalytic competence improves at each biosynthetic step toward F430. Against the expectation that F430 is tuned to be the strongest possible reductant to expedite the rate-determining reductive cleavage of H3C-S by NiI, we discovered the opposite. The unfavorable increase in reduction potential along the F430 biosynthetic pathway is outweighed by strengthening of the Ni-S bond formed upon reductive cleavage of the H3C-S bond. We found that F430 is the weakest electron donor, compared to its precursors, giving rise to the most covalent Ni-S bond, which stabilizes the transition state and hence reduces the rate-determining barrier. In addition, the transition state displays high pro-reactive motion of the transient CH3 fragment toward the H-S bond, superior to its biosynthetic ancestors and likely preventing the formation of a deleterious radical intermediate. Thus, we show a plausible view of how the evolutionary driving force shaped the biocatalytic proficiency of F430 toward CH4 formation.
- MeSH
- biokatalýza MeSH
- katalýza MeSH
- metaloporfyriny * chemie MeSH
- methan chemie MeSH
- oxidace-redukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- factor F430 MeSH Prohlížeč
- metaloporfyriny * MeSH
- methan MeSH
Bifurcating reactions yield two different products emerging from one single transition state and are therefore archetypal examples of reactions that cannot be described within the framework of the traditional Eyring's transition state theory (TST). With the growing number and importance of these reactions in organic and biosynthetic chemistry, there is also an increasing demand for a theoretical tool that would allow for the accurate quantification of reaction outcome at low cost. Here, we introduce such an approach that fulfils these criteria, by evaluating bifurcation selectivity through the energy distribution within the reactive mode of the key transition state. The presented method yields an excellent agreement with experimentally reported product ratios and predicts the correct selectivity for 89% of nearly 50 various cases, covering pericyclic reactions, rearrangements, fragmentations and metal-catalyzed processes as well as a series of trifurcating reactions. With 71% of product ratios determined within the error of less than 20%, we also found that the methodology outperforms three other tested protocols introduced recently in the literature. Given its predictive power, the procedure makes reaction design feasible even in the presence of complex non-TST chemical steps.
- Publikační typ
- časopisecké články MeSH
The α-ketoglutarate (αKG)-dependent oxygenases catalyze a diverse range of chemical reactions using a common high-spin FeIV═O intermediate that, in most reactions, abstract a hydrogen atom from the substrate. Previously, the FeIV═O intermediate in the αKG-dependent halogenase SyrB2 was characterized by nuclear resonance vibrational spectroscopy (NRVS) and density functional theory (DFT) calculations, which demonstrated that it has a trigonal-pyramidal geometry with the scissile C-H bond of the substrate calculated to be perpendicular to the Fe-O bond. Here, we have used NRVS and DFT calculations to show that the FeIV═O complex in taurine dioxygenase (TauD), the αKG-dependent hydroxylase in which this intermediate was first characterized, also has a trigonal bipyramidal geometry but with an aspartate residue replacing the equatorial halide of the SyrB2 intermediate. Computational analysis of hydrogen atom abstraction by square pyramidal, trigonal bipyramidal, and six-coordinate FeIV═O complexes in two different substrate orientations (one more along [σ channel] and another more perpendicular [π channel] to the Fe-O bond) reveals similar activation barriers. Thus, both substrate approaches to all three geometries are competent in hydrogen atom abstraction. The equivalence in reactivity between the two substrate orientations arises from compensation of the promotion energy (electronic excitation within the d manifold) required to access the π channel by the significantly larger oxyl character present in the pπ orbital oriented toward the substrate, which leads to an earlier transition state along the C-H coordinate.
- MeSH
- dioxygenasy chemie metabolismus MeSH
- katalýza MeSH
- kyseliny ketoglutarové chemie MeSH
- kyslík chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- teorie funkcionálu hustoty MeSH
- vodík chemie metabolismus MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- dioxygenasy MeSH
- kyseliny ketoglutarové MeSH
- kyslík MeSH
- vodík MeSH
- železo MeSH