Nejvíce citovaný článek - PubMed ID 31694272
2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase
A series of eleven benzylated intermediates and eleven target compounds derived from salicylanilide were tested against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference strains and against three clinical isolates of methicillin-resistant S. aureus (MRSA) and three isolates of vancomycin-resistant E. faecalis. In addition, the compounds were evaluated against Mycobacterium tuberculosis H37Ra and M. smegmatis ATCC 700084. The in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line THP-1. The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. The benzylated intermediates were found to be completely biologically inactive. Of the final eleven compounds, according to the number of amide groups in the molecule, eight are diamides, and three are triamides that were inactive. 5-Chloro-2-hydroxy-N-[(2S)- 4-(methylsulfanyl)-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (3e) and 5-chloro-2-hydroxy-N-[(2S)-(4-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino)pentan-2-yl)benzamide (3f) showed the broadest spectrum of activity against all tested species/isolates comparable to the used standards (ampicillin and isoniazid). Six diamides showed high antistaphylococcal activity with MICs ranging from 0.070 to 8.95 μM. Three diamides showed anti-enterococcal activity with MICs ranging from 4.66 to 35.8 μM, and the activities of 3f and 3e against M. tuberculosis and M. smegmatis were MICs of 18.7 and 35.8 μM, respectively. All the active compounds were microbicidal. It was observed that the connecting linker between the chlorsalicylic and 4-CF3-anilide cores must be substituted with a bulky and/or lipophilic chain such as isopropyl, isobutyl, or thiabutyl chain. Anticancer activity on THP-1 cells IC50 ranged from 1.4 to >10 µM and increased with increasing lipophilicity.
- Klíčová slova
- antimicrobial activity, cytotoxicity, lipophilicity, peptidomimetics, salicylamide, structure–activity relationships,
- MeSH
- ampicilin MeSH
- anilidy MeSH
- antibakteriální látky farmakologie MeSH
- benzamidy MeSH
- isoniazid MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * MeSH
- mikrobiální testy citlivosti MeSH
- Mycobacterium tuberculosis * MeSH
- peptidomimetika * MeSH
- salicylanilidy farmakologie MeSH
- vankomycin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ampicilin MeSH
- anilidy MeSH
- antibakteriální látky MeSH
- benzamidy MeSH
- isoniazid MeSH
- peptidomimetika * MeSH
- salicylanilide MeSH Prohlížeč
- salicylanilidy MeSH
- vankomycin MeSH
A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.
- Klíčová slova
- acetylcholinesterase, aminoguanidine, antimicrobial activity, butyrylcholinesterase, cytotoxicity, enzyme inhibition, hydrazones, molecular docking, salicylaldehydes,
- Publikační typ
- časopisecké články MeSH
Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).
- Klíčová slova
- 4-(trifluoromethyl)benzohydrazide, acetylcholinesterase inhibition, antimycobacterial activity, butyrylcholinesterase inhibition, cytostatic properties, hydrazides,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- antiinfekční látky * chemická syntéza chemie farmakologie MeSH
- buňky Hep G2 MeSH
- butyrylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory * chemická syntéza chemie farmakologie MeSH
- GPI-vázané proteiny metabolismus MeSH
- imidazoly * chemická syntéza chemie farmakologie MeSH
- lidé MeSH
- Mycobacterium avium růst a vývoj MeSH
- Mycobacterium kansasii růst a vývoj MeSH
- Mycobacterium tuberculosis růst a vývoj MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- ACHE protein, human MeSH Prohlížeč
- antiinfekční látky * MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory * MeSH
- GPI-vázané proteiny MeSH
- imidazoly * MeSH